data report

PHYSICAL AND CHEMICAL DATA
CCOFI CRUISE 5808
6-21 August 1958

SIO Reference 59-48
11 March 1959
UNIVERSITY OF CALIFORNIA
SCRIPPS INSTITUTION OF OCEANOGRAPHY

PHYSICAL AND CHEMICAL DATA

CCOFI CRUISE 5808

6-21 August 1958

Sponsored by

Marine Research Committee

SIO Reference 59-48
11 March 1959

Approved for distribution:

Roger Revelle, Director
CONTENTS

List of Figures .. ii
Introduction ... iii
Personnel ... vi
Tabulated Data .. 245
Distribution List .. 253

FIGURES

1. CCOFI Cruise 5808, station positions
2. Horizontal distribution of temperature at 10 meters
3. Horizontal distribution of salinity at 10 meters
INTRODUCTION

The data presented in this report were collected on the one hundred and eleventh consecutive cruise of the California Cooperative Oceanic Fisheries Investigations program. The R/V Black Douglas of the U. S. Bureau of Commercial Fisheries participated in this cruise.

The data are tabulated at observed depths; the interpolated and computed values are tabulated at standard depths and are accompanied by charts of horizontal distribution. The presentation of data in this report does not constitute publication; however, the data contained in this report have been carefully edited and no modifications should be necessary before final publication.

STANDARD PROCEDURES

Processing of the data was carried out using the method described by Klein. Certain approximations have been introduced for the determination of the integrated pressure terms which may result in errors whose maximum values are less than 0.5 dynamic centimeter at 0 over 200 decibars, 1.0 dynamic centimeter at 0 over 500 decibars, and 2.0 dynamic centimeters at 0 over 1000 decibars. The 125-meter level was introduced into the integration to obtain greater accuracy in the determination of ΔD. The interpolated values at 125 meters are not tabulated.

To indicate degree of accuracy, temperatures are recorded in tenths of a degree when obtained by bucket thermometer, thermograph, or bathythermograph, while temperatures from reversing thermometers are recorded in hundredths of a degree. Extrapolated values and values interpolated between remote observations are entered within parentheses. A hyphen is used to indicate a missing observed value. The time is the time of messenger release. When more than one cast was made on a station, messenger times and wire angles are given in the order of increasing depth. A line is left blank between the observed data of each cast.

1/Klein, Hans T. A new technique for processing physical oceanographic data. MS.
FOOTNOTES

Footnotes which appear frequently are "loose bottle cap" and "possible evaporation." To avoid any confusion as to their meaning the following explanation is included.

Laboratory personnel, before titrating the salinity samples, note any possible imperfections in the sealing of the bottles as follows:

Loose bottle cap: The cap is definitely loose so that it could be moved with very little applied pressure. The salinity values obtained from these samples may be usable depending on time and/or conditions of storage.

Possible evaporation: Either the cap was sealed with less than usual pressure, the bottle edge chipped, the rubber washer cracked, or the bale broke on opening, etc.

Use of the above values in interpolation depends upon consistency with other values of salinity and other properties, and these footnotes are supplemented with "falls on property curve" or "does not fall on property curve," depending upon whether the property curve was drawn through the value or not.

In addition to footnotes, three special notations are used without footnotes because their meaning is always the same.

To indicate a premature or a delayed reversal of the water-sampling device which results in certain depth and property errors, the following notation is used.

p: pretrip or posttrip.

Values which are not drawn through because they seem to be in error without apparent reason are indicated by one of the following notations.

r: rejected value (value seems to be definitely wrong),

u: uncertain value (value may be correct; occasionally it can influence the drawing of the property curve).

FORMAT

These data are typed in the format of the University of California Press publication, "Oceanic Observations of the Pacific." So that these pages can be used as copy for the 1958 volume, the first page of the Cruise 5808 data is numbered 245. iv
VELOCITY OF GEOSTROPHIC FLOW

VELOCITY (CM/SEC) FOR A DIFFERENCE IN ΔD OF 1 DYN. CM.
CCOFI CRUISE 5808
6-21 AUGUST 1958
STATION POSITIONS
DIRECTION OF TRAVEL

- NET TOW STATION
- HYDROGRAPHIC STATION

SPECIAL NET TOW STATIONS
1. 129.28
2. 127.32
3. 126.34
4. 119.37
5. 119.40
6. 119°.29
7. 120°.37
8. 121.34
9. 121.30
10. 120°.27
11. 120.31
12. 120.33
13. 118.36
14. 118.33
15. 117.34
16. 116.25
17. 112.30

BLACK DOUGLAS
6-21 AUGUST
CCOFI CRUISE 5808
6-21 AUGUST 1958
10 METER TEMPERATURE
CONTOUR INTERVAL 1.0°C

FIGURE 2
CCOFI CRUISE 5808
6-21 AUGUST 1958
10 METER SALINITY
CONTOUR INTERVAL 0.20%
PERSONNEL

SHIP'S CAPTAIN

Forster, Charles W., R/V Black Douglas

PERSONNEL PARTICIPATING IN THE COLLECTION OF DATA

R/V Black Douglas

Wolf, Robert S., Fishery Research Biologist, Bureau of Commercial Fisheries
Casey, Harold D., Fishery Aid, Bureau of Commercial Fisheries
Claussen, Leighton G., Fishery Research Biologist, Bureau of Commercial Fisheries
Goffman, Jackson E., Marine Technician
Wolf, Richard L., observer, Bureau of Commercial Fisheries
<table>
<thead>
<tr>
<th>Observed</th>
<th>Interpolated</th>
<th>Computed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z (m)</td>
<td>T ($^\circ$C)</td>
<td>S (%)</td>
</tr>
<tr>
<td>0</td>
<td>18.30</td>
<td>33.55</td>
</tr>
<tr>
<td>9</td>
<td>14.15</td>
<td>33.58</td>
</tr>
<tr>
<td>18</td>
<td>13.24</td>
<td>33.56</td>
</tr>
<tr>
<td>27</td>
<td>12.78</td>
<td>33.55</td>
</tr>
</tbody>
</table>

BLACK DOUGLAS; August 7, 1958; 0315 GCT; 29°22'5"N, 115°17.5"W; sounding, 30 fm; wind, 280°, force 2; weather, partly cloudy; sea, slight; wire angle, 02°.

BLACK DOUGLAS; August 7, 1958; 0623 GCT; 29°12'N, 115°39'W; sounding, 650 fm; wind, 280°, force 3; weather, clear; sea, slight; wire angle, 08°.

BLACK DOUGLAS; August 7, 1958; 0925 GCT; 29°02'N, 115°58.5°W; sounding, 950 fm; wind, 290°, force 2; weather, clear; sea, slight; wire angle, 12°.

BLACK DOUGLAS; August 7, 1958; 1135 GCT; 29°11'N, 114°55'W; sounding, 41 fm; wind, 300°, force 3; weather, clear; sea, slight; wire angle, 03°.

245
Observed Data

<table>
<thead>
<tr>
<th>Z (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>O₂ (ml/L)</th>
<th>δ₇₀⁺²⁻ (10⁻⁵ cm³/g)</th>
<th>Z (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>O₂ (ml/L)</th>
<th>δ₇₀⁺²⁻ (10⁻⁵ cm³/g)</th>
</tr>
</thead>
</table>

115.30
BLACK DOUGLAS; August 7, 1958; 1949 GCT; 28°04'N, 115°08'W; sounding, 50 fm; wind, 300°, force 3; weather, partly cloudy; sea, slight; wire angle, 02°.

- 0: 16.65 33.58 6.24 388
- 9: 17.74 33.57 6.09 367
- 23: 15.45 33.51 5.77 321
- 41: 14.03 33.57 4.85 288
- 60: 11.72 33.57 3.82 244
- 78: 11.51 33.69 3.31 232

115.35
BLACK DOUGLAS; August 7, 1958; 1608 GCT; 28°55'N, 115°27.5'W; sounding, 500 fm; wind, 310°, force 3; weather, partly cloudy; sea, moderate; wire angle, 11°.

- 0: 20.74 33.72 5.49 429
- 9: 20.72 33.74 5.50 427
- 28: 16.74 33.55 6.06 346
- 37: 15.90 33.51 5.93 330
- 46: 14.22 33.46 5.39 300
- 55: 13.09 33.68 4.73 272
- 64: 12.78 33.68 3.86 255
- 78: 12.69 33.86 3.71 240
- 91: 11.87 33.86 2.71 225
- 104: 12.18 34.03 1.84 218
- 126: 11.63 34.05 2.00 208
- 152: 11.76 34.32 1.10 190
- 182: 11.40 34.34 1.04 182
- 226: 10.63 34.32 1.03 170
- 299: 9.90 34.46 0.66 148
- 389: 8.58 34.34 0.72 136
- 509: 7.08 34.37 0.50 114

115.40
BLACK DOUGLAS; August 7, 1958; 1228 GCT; 28°45'N, 115°47'W; sounding, 750 fm; wind, 320°, force 2; weather, clear; sea, slight; wire angle, 13°.

- 0: 20.28 33.71 5.58 418
- 9: 18.66 33.59 6.07 387
- 28: 15.80 33.61 5.90 321
- 37: 14.29 33.53 5.36 296
- 46: 13.35 33.58 4.96 274
- 55: 13.26 33.87 2.61 250
- 64: 12.68 33.95 2.12 234
- 77: 12.94 34.14 1.31 225
- 90: 12.92 34.16 1.08 223
- 102: 12.86 34.21 1.06 218
- 123: 12.32 34.17 1.24 211
- 148: 12.24 34.25 1.03 203
- 176: 11.80 34.29 1.34 192
- 219: 11.60 34.50 0.92 174
- 289: 9.23 34.37 1.64 144
- 380: 8.70 34.36 0.85 136
- 500: 6.92 34.33 0.40 114

117.26
BLACK DOUGLAS; August 8, 1958; 0042 GCT; 28°56'N, 114°41'W; sounding, 42 fm; wind, 280°, force 3; weather, partly cloudy; sea, slight; wire angle, 05°.

- 0: 18.58 33.56 6.10 387
- 9: 16.77 33.60 6.34 343
- 18: 15.18 33.53 6.19 314
- 32: 14.48 33.54 4.64 279
- 55: 11.29 33.64 3.03 232

a) Loose bottle cap; value falls on property curve.
<table>
<thead>
<tr>
<th>Z</th>
<th>T °C</th>
<th>S %</th>
<th>O₂ ml/L</th>
<th>δT °C 10 cm/g</th>
<th>Z</th>
<th>T °C</th>
<th>S %</th>
<th>O₂ ml/L</th>
<th>δT °C 10 cm/g</th>
<th>ΔD dyn.m</th>
</tr>
</thead>
</table>

Black Douglas; August 8, 1958; 0305 GCT; 28°48'N, 114°56.5'W; sounding, 55 fm; wind, 280°, force 3; weather, partly cloudy; sea, moderate; wire angle, 11°.

<p>| | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>18.73</td>
<td>33.58</td>
<td>6.96</td>
<td>390</td>
<td>0</td>
<td>18.73</td>
<td>33.58</td>
<td>6.06</td>
<td>24.02</td>
<td>390</td>
</tr>
<tr>
<td>8</td>
<td>17.71</td>
<td>33.57</td>
<td>5.98</td>
<td>366</td>
<td>10</td>
<td>17.50</td>
<td>33.57</td>
<td>5.98</td>
<td>24.32</td>
<td>362</td>
</tr>
<tr>
<td>22</td>
<td>16.25</td>
<td>33.56</td>
<td>5.96</td>
<td>334</td>
<td>20</td>
<td>16.60</td>
<td>33.56</td>
<td>5.98</td>
<td>24.54</td>
<td>341</td>
</tr>
<tr>
<td>40</td>
<td>13.12</td>
<td>33.52</td>
<td>4.68</td>
<td>274</td>
<td>30</td>
<td>15.80</td>
<td>33.56</td>
<td>5.82</td>
<td>24.70</td>
<td>325</td>
</tr>
<tr>
<td>50</td>
<td>12.12</td>
<td>33.58</td>
<td>6.04</td>
<td>250</td>
<td>50</td>
<td>12.55</td>
<td>33.55</td>
<td>4.35</td>
<td>25.38</td>
<td>260</td>
</tr>
<tr>
<td>77</td>
<td>11.33</td>
<td>33.69</td>
<td>3.18</td>
<td>228</td>
<td>75</td>
<td>11.40</td>
<td>33.68</td>
<td>3.23</td>
<td>25.70</td>
<td>230</td>
</tr>
</tbody>
</table>

Black Douglas; August 8, 1958; 0617 GCT; 28°38'N, 115°16'W; sounding, 100 fm; wind, 300°, force 3; weather, partly cloudy; sea, moderate; wire angle, 15°.

Black Douglas; August 8, 1958; 0910 GCT; 28°28'N, 115°35.5'W; sounding, 400 fm; wind, 320°, force 2; weather, partly cloudy; sea, slight; wire angle, 12°.

Black Douglas; August 8, 1958; 1936 GCT; 28°40.5'N, 114°25.5'W; sounding, 45 fm; wind, 290°, force 3; weather, partly cloudy; sea, slight; wire angle, 0°.

Black Douglas; August 8, 1958; 1700 GCT; 28°30.5'N, 114°45.5'W; sounding, 60 fm; wind, 300°, force 3; weather, partly cloudy; sea, slight; wire angle, 10°.

a) Salinity samples at 59 and 77 meters appear to have been reversed; they are assumed to be in the order listed.
Observed Data

<table>
<thead>
<tr>
<th>Z (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>O_2 (ml/L)</th>
<th>(\delta T) (°)</th>
<th>(\delta T) (cm/L)</th>
<th>ΔD (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>20.71</td>
<td>33.68</td>
<td>5.35</td>
<td>20.71</td>
<td>33.68</td>
<td>5.38</td>
</tr>
<tr>
<td>9</td>
<td>20.73</td>
<td>33.68</td>
<td>5.38</td>
<td>20.73</td>
<td>33.68</td>
<td>5.38</td>
</tr>
<tr>
<td>28</td>
<td>19.29</td>
<td>33.58</td>
<td>5.74</td>
<td>19.29</td>
<td>33.58</td>
<td>5.41</td>
</tr>
<tr>
<td>46</td>
<td>16.96</td>
<td>33.58</td>
<td>5.90</td>
<td>16.96</td>
<td>33.58</td>
<td>5.77</td>
</tr>
<tr>
<td>69</td>
<td>13.79</td>
<td>33.82</td>
<td>2.94</td>
<td>13.79</td>
<td>33.82</td>
<td>5.59</td>
</tr>
<tr>
<td>93</td>
<td>13.01</td>
<td>33.87</td>
<td>2.25</td>
<td>13.01</td>
<td>33.87</td>
<td>2.73</td>
</tr>
</tbody>
</table>

Interpolated Data

<table>
<thead>
<tr>
<th>Z (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>O_2 (ml/L)</th>
<th>(\delta T) (°)</th>
<th>(\delta T) (cm/L)</th>
<th>ΔD (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>20.70</td>
<td>33.66</td>
<td>5.17</td>
<td>20.70</td>
<td>33.66</td>
<td>5.17</td>
</tr>
<tr>
<td>9</td>
<td>20.71</td>
<td>33.69</td>
<td>5.29</td>
<td>20.71</td>
<td>33.69</td>
<td>5.29</td>
</tr>
<tr>
<td>28</td>
<td>20.20</td>
<td>33.64</td>
<td>5.36</td>
<td>20.20</td>
<td>33.64</td>
<td>5.30</td>
</tr>
<tr>
<td>47</td>
<td>19.41</td>
<td>33.63</td>
<td>5.37</td>
<td>19.41</td>
<td>33.63</td>
<td>5.36</td>
</tr>
<tr>
<td>69</td>
<td>15.56</td>
<td>33.55</td>
<td>5.27</td>
<td>15.56</td>
<td>33.55</td>
<td>5.37</td>
</tr>
<tr>
<td>92</td>
<td>12.28</td>
<td>33.58</td>
<td>3.58</td>
<td>12.28</td>
<td>33.58</td>
<td>5.10</td>
</tr>
</tbody>
</table>

Computed Data

<table>
<thead>
<tr>
<th>Z (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>O_2 (ml/L)</th>
<th>(\delta T) (°)</th>
<th>(\delta T) (cm/L)</th>
<th>ΔD (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>20.92</td>
<td>33.68</td>
<td>4.65</td>
<td>20.92</td>
<td>33.68</td>
<td>4.65</td>
</tr>
<tr>
<td>9</td>
<td>20.76</td>
<td>33.69</td>
<td>5.21</td>
<td>20.76</td>
<td>33.69</td>
<td>5.21</td>
</tr>
<tr>
<td>23</td>
<td>20.01</td>
<td>33.65</td>
<td>5.14</td>
<td>20.01</td>
<td>33.65</td>
<td>5.15</td>
</tr>
<tr>
<td>41</td>
<td>17.31</td>
<td>33.58</td>
<td>5.61</td>
<td>17.31</td>
<td>33.58</td>
<td>5.28</td>
</tr>
<tr>
<td>59</td>
<td>13.68</td>
<td>33.58</td>
<td>4.49</td>
<td>13.68</td>
<td>33.58</td>
<td>5.36</td>
</tr>
<tr>
<td>78</td>
<td>11.76</td>
<td>33.68</td>
<td>2.90</td>
<td>11.76</td>
<td>33.68</td>
<td>3.10</td>
</tr>
</tbody>
</table>

Observations

- **8°53.5**: BLACK DOUGLAS; August 8, 1958; 1912 GCT; 28°20.51N, 115°05'1W; sounding, 65 fm; wind, 320°, force 4; weather, partly cloudy; sea, moderate; wire angle, 00°.
- **9°33**: BLACK DOUGLAS; August 8, 1958; 1500 GCT; 28°19'1N, 114°53'1W; sounding, 62 fm; wind, 320°, force 3; weather, partly cloudy; sea, slight; wire angle, 00°.
- **12°25**: BLACK DOUGLAS; August 8, 1958; 2210 GCT; 28°23'1N, 114°14'5W; sounding, 28 fm; wind, 270°, force 3; weather, partly cloudy; sea, slight; wire angle, 00°.
- **12°30**: BLACK DOUGLAS; August 9, 1958; 0057 GCT; 28°13'1N, 114°34'1W; sounding, 52 fm; wind, 320°, force 3; weather, partly cloudy; sea, moderate; wire angle, 10°.
- **12°35**: BLACK DOUGLAS; August 9, 1958; 0333 GCT; 28°03'1N, 114°54'1W; sounding, 47 fm; wind, 330°, force 4; weather, partly cloudy; sea, moderate; wire angle, 04°.

Source: BLACK DOUGLAS; BLACK DOUGLAS; BLACK DOUGLAS; BLACK DOUGLAS; BLACK DOUGLAS; BLACK DOUGLAS.
<table>
<thead>
<tr>
<th>OBSERVED</th>
<th>INTERPOLATED</th>
<th>COMPUTED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z (m)</td>
<td>T (°C)</td>
<td>S (L)</td>
</tr>
<tr>
<td>0</td>
<td>19.84</td>
<td>33.95</td>
</tr>
<tr>
<td>10</td>
<td>19.88</td>
<td>33.89</td>
</tr>
<tr>
<td>20</td>
<td>17.00</td>
<td>33.68</td>
</tr>
<tr>
<td>30</td>
<td>15.78</td>
<td>33.73</td>
</tr>
<tr>
<td>40</td>
<td>14.68</td>
<td>33.77</td>
</tr>
<tr>
<td>50</td>
<td>13.63</td>
<td>33.73</td>
</tr>
<tr>
<td>60</td>
<td>13.00</td>
<td>33.82</td>
</tr>
<tr>
<td>70</td>
<td>12.65</td>
<td>33.90</td>
</tr>
<tr>
<td>80</td>
<td>12.25</td>
<td>33.95</td>
</tr>
<tr>
<td>90</td>
<td>12.10</td>
<td>34.08</td>
</tr>
<tr>
<td>100</td>
<td>11.85</td>
<td>34.31</td>
</tr>
<tr>
<td>110</td>
<td>11.69</td>
<td>34.42</td>
</tr>
<tr>
<td>120</td>
<td>11.37</td>
<td>34.43</td>
</tr>
</tbody>
</table>

BLACK DOUGLAS; August 9, 1958; 0839 GCT; 27°43'N, 115°33'W; sounding, 1150 fm; wind, 290°, force 2; weather, clear; sea, slight; wire angle, 05°.

BLACK DOUGLAS; August 10, 1958; 0235 GCT; 26°29'N, 113°29'W; sounding, 44 fm; wind, 300°, force 2; weather, overcast; sea, moderate; wire angle, 02°.

BLACK DOUGLAS; August 10, 1958; 1735 GCT; 26°17'5'N, 113°47'W; sounding, 200 fm; wind, 250°, force 2; weather, rain; sea, moderate; wire angle, 03°.

BLACK DOUGLAS; August 10, 1958; 1410 GCT; 26°09'N, 114°07'5"W; sounding, 1150 fm; wind, 320°, force 3; weather, overcast; sea, moderate; wire angle, 14°.

120.45

130.30

130.35

130.40

249
<table>
<thead>
<tr>
<th>Z</th>
<th>T</th>
<th>S</th>
<th>O₂</th>
<th>δ₃³₀</th>
<th>Z</th>
<th>T</th>
<th>S</th>
<th>O₂</th>
<th>σₜ</th>
<th>δ₃³₀</th>
<th>ΔD</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>°C</td>
<td>%</td>
<td>ml/L</td>
<td>cm/g</td>
<td>m</td>
<td>°C</td>
<td>%</td>
<td>ml/L</td>
<td>g/L</td>
<td>cm/g</td>
<td>dyn</td>
</tr>
<tr>
<td>0</td>
<td>23.77</td>
<td>34.01</td>
<td>4.51</td>
<td>488</td>
<td>0</td>
<td>23.77</td>
<td>34.01</td>
<td>4.81</td>
<td>22.99</td>
<td>488</td>
<td>0.00</td>
</tr>
<tr>
<td>10</td>
<td>23.82</td>
<td>33.98</td>
<td>4.96</td>
<td>493</td>
<td>10</td>
<td>23.82</td>
<td>33.98</td>
<td>4.96</td>
<td>22.94</td>
<td>493</td>
<td>0.05</td>
</tr>
<tr>
<td>20</td>
<td>19.56</td>
<td>33.78</td>
<td>5.50</td>
<td>395</td>
<td>20</td>
<td>21.65</td>
<td>33.88</td>
<td>4.99</td>
<td>23.48</td>
<td>442</td>
<td>0.10</td>
</tr>
<tr>
<td>30</td>
<td>17.85</td>
<td>33.69</td>
<td>5.58</td>
<td>360</td>
<td>30</td>
<td>19.10</td>
<td>33.76</td>
<td>5.53</td>
<td>24.07</td>
<td>385</td>
<td>0.14</td>
</tr>
<tr>
<td>40</td>
<td>17.06</td>
<td>33.70</td>
<td>4.61</td>
<td>342</td>
<td>40</td>
<td>16.77</td>
<td>33.71</td>
<td>4.90</td>
<td>24.60</td>
<td>335</td>
<td>0.21</td>
</tr>
<tr>
<td>50</td>
<td>15.74</td>
<td>33.76</td>
<td>5.33</td>
<td>309</td>
<td>50</td>
<td>12.98</td>
<td>33.68</td>
<td>3.92</td>
<td>25.39</td>
<td>260</td>
<td>0.28</td>
</tr>
<tr>
<td>60</td>
<td>13.68</td>
<td>33.64</td>
<td>4.53</td>
<td>279</td>
<td>60</td>
<td>12.97</td>
<td>34.04</td>
<td>2.68</td>
<td>25.88</td>
<td>213</td>
<td>0.34</td>
</tr>
<tr>
<td>70</td>
<td>12.68</td>
<td>33.69</td>
<td>3.72</td>
<td>253</td>
<td>70</td>
<td>11.45</td>
<td>34.42</td>
<td>1.03</td>
<td>26.26</td>
<td>176</td>
<td>0.44</td>
</tr>
<tr>
<td>80</td>
<td>11.66</td>
<td>33.95</td>
<td>3.32</td>
<td>215</td>
<td>80</td>
<td>11.45</td>
<td>34.65</td>
<td>0.27</td>
<td>26.44</td>
<td>160</td>
<td>0.53</td>
</tr>
<tr>
<td>90</td>
<td>10.47</td>
<td>33.98</td>
<td>2.50</td>
<td>210</td>
<td>90</td>
<td>10.80</td>
<td>34.62</td>
<td>0.24</td>
<td>26.54</td>
<td>151</td>
<td>0.61</td>
</tr>
<tr>
<td>100</td>
<td>12.35</td>
<td>34.44</td>
<td>0.88</td>
<td>192</td>
<td>100</td>
<td>10.25</td>
<td>34.62</td>
<td>0.24</td>
<td>26.64</td>
<td>141</td>
<td>0.68</td>
</tr>
<tr>
<td>110</td>
<td>11.22</td>
<td>34.42</td>
<td>1.09</td>
<td>173</td>
<td>110</td>
<td>8.48</td>
<td>34.49</td>
<td>0.16</td>
<td>26.82</td>
<td>124</td>
<td>0.82</td>
</tr>
<tr>
<td>120</td>
<td>11.12</td>
<td>34.36</td>
<td>0.32</td>
<td>162</td>
<td>120</td>
<td>7.41</td>
<td>34.44</td>
<td>0.17</td>
<td>26.94</td>
<td>112</td>
<td>0.94</td>
</tr>
<tr>
<td>130</td>
<td>11.04</td>
<td>34.63</td>
<td>0.24</td>
<td>154</td>
<td>130</td>
<td>7.17</td>
<td>34.44</td>
<td>0.17</td>
<td>26.94</td>
<td>112</td>
<td>0.94</td>
</tr>
<tr>
<td>140</td>
<td>10.18</td>
<td>34.62</td>
<td>0.24</td>
<td>140</td>
<td>140</td>
<td>6.34</td>
<td>34.44</td>
<td>0.17</td>
<td>26.94</td>
<td>112</td>
<td>0.94</td>
</tr>
<tr>
<td>150</td>
<td>8.55</td>
<td>34.49</td>
<td>0.01</td>
<td>125</td>
<td>150</td>
<td>4.41</td>
<td>34.44</td>
<td>0.17</td>
<td>26.94</td>
<td>112</td>
<td>0.94</td>
</tr>
<tr>
<td>160</td>
<td>7.26a</td>
<td>34.44</td>
<td>0.18</td>
<td>111</td>
<td>160</td>
<td>3.41</td>
<td>34.44</td>
<td>0.17</td>
<td>26.94</td>
<td>112</td>
<td>0.94</td>
</tr>
</tbody>
</table>

a) Alternate value, 7.36°C, not used in interpolation.
<table>
<thead>
<tr>
<th>Station</th>
<th>Date</th>
<th>Time GCT</th>
<th>Latitude North</th>
<th>Longitude West</th>
<th>Sounding (fm)</th>
<th>Wind Dir</th>
<th>Wind Force</th>
<th>Weather Description</th>
<th>Sea Condition</th>
<th>10 Meters T</th>
<th>10 Meters S</th>
<th>50 Meters T</th>
<th>50 Meters S</th>
</tr>
</thead>
<tbody>
<tr>
<td>110.33-B</td>
<td>VIII-6</td>
<td>2200</td>
<td>29°50.5'</td>
<td>115°52.0'</td>
<td>50</td>
<td>calm</td>
<td>partly cloudy</td>
<td>smooth</td>
<td>15.60</td>
<td>33.49</td>
<td>12.54</td>
<td>33.48</td>
<td></td>
</tr>
<tr>
<td>110.35-B</td>
<td>6</td>
<td>2030</td>
<td>29°46.5'</td>
<td>116°00.0'</td>
<td>600</td>
<td>220°</td>
<td>partly cloudy</td>
<td>smooth</td>
<td>19.54</td>
<td>33.52</td>
<td>15.34</td>
<td>33.41</td>
<td></td>
</tr>
<tr>
<td>110.40-B</td>
<td>6</td>
<td>1800</td>
<td>29°42.0'</td>
<td>116°19.5'</td>
<td>1250</td>
<td>calm</td>
<td>cloudy</td>
<td>smooth</td>
<td>19.48</td>
<td>33.51</td>
<td>16.26</td>
<td>33.46</td>
<td></td>
</tr>
<tr>
<td>112.30-B</td>
<td>21</td>
<td>0700</td>
<td>29°35.0'</td>
<td>115°29.0'</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>missing</td>
<td>missing</td>
<td>15.44</td>
<td>33.53</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>116.25-B</td>
<td>20</td>
<td>0805</td>
<td>29°06.0'</td>
<td>114°40.5'</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>missing</td>
<td>missing</td>
<td>17.94</td>
<td>33.55</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>117.24-B</td>
<td>20</td>
<td>0555</td>
<td>28°55.0'</td>
<td>114°31.0'</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>missing</td>
<td>missing</td>
<td>18.00</td>
<td>33.56</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>118.28-B</td>
<td>20</td>
<td>0045</td>
<td>28°43.5'</td>
<td>114°45.0'</td>
<td>53</td>
<td>300°</td>
<td>4</td>
<td>missing</td>
<td>moderate</td>
<td>20.78</td>
<td>33.58</td>
<td>14.30</td>
<td>33.56</td>
</tr>
<tr>
<td>118.33-B</td>
<td>19</td>
<td>2210</td>
<td>28°29.5'</td>
<td>115°00.0'</td>
<td>70</td>
<td>320°</td>
<td>4</td>
<td>partly cloudy</td>
<td>moderate</td>
<td>22.18</td>
<td>33.70</td>
<td>18.14</td>
<td>33.62</td>
</tr>
<tr>
<td>118.36-B</td>
<td>19</td>
<td>2000</td>
<td>28°20.0'</td>
<td>115°11.0'</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>missing</td>
<td>missing</td>
<td>21.38</td>
<td>33.69</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>119.37-B</td>
<td>16</td>
<td>2020</td>
<td>28°07.5'</td>
<td>115°09.5'</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>missing</td>
<td>missing</td>
<td>20.76</td>
<td>33.68</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>119.40-B</td>
<td>17</td>
<td>0645</td>
<td>28°04.0'</td>
<td>115°18.0'</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>missing</td>
<td>missing</td>
<td>19.04</td>
<td>33.76</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>119°39-B</td>
<td>17</td>
<td>0755</td>
<td>28°02.0'</td>
<td>115°12.5'</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>missing</td>
<td>missing</td>
<td>21.45</td>
<td>33.68</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>120.33-B</td>
<td>19</td>
<td>0020</td>
<td>28°10.5'</td>
<td>114°50.0'</td>
<td>52</td>
<td>320°</td>
<td>5</td>
<td>partly cloudy</td>
<td>rough</td>
<td>22.28</td>
<td>-</td>
<td>19.90</td>
<td>-</td>
</tr>
<tr>
<td>120.40-B</td>
<td>9</td>
<td>0555</td>
<td>27°56.5'</td>
<td>115°14.0'</td>
<td>21</td>
<td>240°</td>
<td>2</td>
<td>partly cloudy</td>
<td>missing</td>
<td>18.68</td>
<td>33.58</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>120°27-B</td>
<td>18</td>
<td>1155</td>
<td>28°11.0'</td>
<td>114°15.5'</td>
<td>20</td>
<td>320°</td>
<td>3</td>
<td>clear</td>
<td>moderate</td>
<td>21.80</td>
<td>33.62</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>120°31-B</td>
<td>18</td>
<td>2200</td>
<td>28°06.0'</td>
<td>114°33.0'</td>
<td>45</td>
<td>320°</td>
<td>5</td>
<td>partly cloudy</td>
<td>moderate</td>
<td>22.36</td>
<td>-</td>
<td>16.68</td>
<td>-</td>
</tr>
<tr>
<td>120°37-B</td>
<td>18</td>
<td>0430</td>
<td>27°53.0'</td>
<td>115°00.5'</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>missing</td>
<td>missing</td>
<td>23.48</td>
<td>33.84</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>121.30-B</td>
<td>18</td>
<td>0600</td>
<td>27°58.5'</td>
<td>114°26.5'</td>
<td>18</td>
<td>310°</td>
<td>3</td>
<td>clear</td>
<td>moderate</td>
<td>22.12</td>
<td>33.76</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>121.34-B</td>
<td>18</td>
<td>0645</td>
<td>27°52.5'</td>
<td>114°42.5'</td>
<td>20</td>
<td>340°</td>
<td>4</td>
<td>clear</td>
<td>moderate</td>
<td>22.28</td>
<td>33.67</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Station</td>
<td>Date</td>
<td>Time</td>
<td>Latitude North</td>
<td>Longitude West</td>
<td>Sounding (fm)</td>
<td>Wind Dir</td>
<td>Wind Force</td>
<td>Weather</td>
<td>Sea</td>
<td>10 Meters T</td>
<td>10 Meters S</td>
<td>50 Meters T</td>
<td>50 Meters S</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td>------</td>
<td>----------------</td>
<td>----------------</td>
<td>--------------</td>
<td>----------</td>
<td>------------</td>
<td>---------</td>
<td>-----</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>123.37-B</td>
<td>VIII-9</td>
<td>1810</td>
<td>27°24.0'</td>
<td>114°39.5'</td>
<td>40</td>
<td>290°</td>
<td>2</td>
<td>partly cloudy</td>
<td>slight</td>
<td>17.84</td>
<td>34.04</td>
<td>15.44</td>
<td>-</td>
</tr>
<tr>
<td>123.42-B</td>
<td>9</td>
<td>1545</td>
<td>27°14.0'</td>
<td>114°59.5'</td>
<td>875</td>
<td>290°</td>
<td>2</td>
<td>partly cloudy</td>
<td>slight</td>
<td>19.65</td>
<td>33.66</td>
<td>14.20</td>
<td>33.69</td>
</tr>
<tr>
<td>123.45-B</td>
<td>9</td>
<td>1315</td>
<td>27°08.0'</td>
<td>115°11.0'</td>
<td>1250</td>
<td>290°</td>
<td>2</td>
<td>partly cloudy</td>
<td>moderate</td>
<td>20.49</td>
<td>33.67</td>
<td>15.66</td>
<td>33.48</td>
</tr>
<tr>
<td>126.34-B</td>
<td>14</td>
<td>1630</td>
<td>27°06.0'</td>
<td>114°13.0'</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>missing</td>
<td>missing</td>
<td>20.96</td>
<td>34.16</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>127.32-B</td>
<td>13</td>
<td>2025</td>
<td>26°58.0'</td>
<td>113°58.0'</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>missing</td>
<td>missing</td>
<td>19.86</td>
<td>34.15</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>127.34-B</td>
<td>10</td>
<td>0000</td>
<td>26°53.5'</td>
<td>114°06.0'</td>
<td>43</td>
<td>270°</td>
<td>3</td>
<td>partly cloudy</td>
<td>moderate</td>
<td>22.66</td>
<td>34.17</td>
<td>16.73</td>
<td>34.24</td>
</tr>
<tr>
<td>127.40-B</td>
<td>10</td>
<td>0320</td>
<td>26°43.5'</td>
<td>114°29.5'</td>
<td>1550</td>
<td>300°</td>
<td>3</td>
<td>partly cloudy</td>
<td>moderate</td>
<td>21.62</td>
<td>33.96</td>
<td>14.54</td>
<td>33.73</td>
</tr>
<tr>
<td>127.45-B</td>
<td>10</td>
<td>0610</td>
<td>26°33.5'</td>
<td>114°48.5'</td>
<td>1900</td>
<td>320°</td>
<td>2</td>
<td>partly cloudy</td>
<td>moderate</td>
<td>22.34</td>
<td>33.78</td>
<td>15.44</td>
<td>33.53</td>
</tr>
<tr>
<td>129.28-B</td>
<td>12</td>
<td>0440</td>
<td>26°43.5'</td>
<td>113°27.0'</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>missing</td>
<td>missing</td>
<td>23.94</td>
<td>34.39</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>133.25-B</td>
<td>11</td>
<td>0645</td>
<td>26.04.5'</td>
<td>112°48.0'</td>
<td>44</td>
<td>300°</td>
<td>2</td>
<td>missing</td>
<td>missing</td>
<td>25.60</td>
<td>34.17</td>
<td>17.34</td>
<td>34.28</td>
</tr>
<tr>
<td>133.30-B</td>
<td>11</td>
<td>0930</td>
<td>25°54.5'</td>
<td>113°07.5'</td>
<td>105</td>
<td>300°</td>
<td>2</td>
<td>missing</td>
<td>slight</td>
<td>25.25</td>
<td>34.34</td>
<td>17.76</td>
<td>34.22</td>
</tr>
<tr>
<td>137.23-B</td>
<td>11</td>
<td>1735</td>
<td>25°34.0'</td>
<td>112°18.5'</td>
<td>40</td>
<td>270°</td>
<td>1</td>
<td>cloudy</td>
<td>slight</td>
<td>26.05</td>
<td>34.30</td>
<td>19.95</td>
<td>34.59</td>
</tr>
<tr>
<td>137.30-B</td>
<td>11</td>
<td>1420</td>
<td>25°20.0'</td>
<td>112°45.5'</td>
<td>135</td>
<td>-</td>
<td>-</td>
<td>cloudy</td>
<td>slight</td>
<td>25.83</td>
<td>34.29</td>
<td>17.91</td>
<td>33.85</td>
</tr>
</tbody>
</table>
DISTRIBUTION LIST

Dr. E. H. Ahlstrom
Bureau of Commercial Fisheries
c/o Scripps Institution of Oceanography
La Jolla, California

Mr. William Anderson
Bureau of Commercial Fisheries
Brunswick, Georgia

Dr. Leo D. Berner
University of California
Scripps Institution of Oceanography
La Jolla, California

Dr. Edward Brinton
University of California
Scripps Institution of Oceanography
La Jolla, California

Dr. Wayne V. Burt
Assoc. Prof. of Oceanography
School of Science
Oregon State College
Corvallis, Oregon

Librarian (4)
Department of Fish and Game
California State Fisheries Laboratory
Terminal Island, California

Chief, Division of Fisheries
Commonwealth Scientific and Industrial
Research Organization
P. O. Box 21
Crunulla, N. S. W., Australia

Mr. R. S. Croker, Director
California Department of Fish and Game
Marine Fisheries Laboratory Branch
772 Capitol Avenue
Sacramento 14, California

Dr. Ernest R. Anderson
Code 2233
U. S. Navy Electronics Laboratory
San Diego 52, California

Mr. Thomas S. Austin
Bureau of Commercial Fisheries
Biological Laboratory
P. O. Box 3830
Honolulu 12, Hawaii

Dr. Rolf Bolin
Hopkins Marine Station
Pacific Grove, California

British Joint Services
(Navy Staff)
1910 K Street N. W.
Washington, D. C.

Mr. J. G. Burnette, Chairman
Marine Research Committee
P. O. Box 807
Los Altos, California

Mr. Ray Cannon
Ocean Fish Protective Association
645 N. Serrano Street
Los Angeles 4, California

Mr. Harold B. Clemens, Jr.
Marine Resources Operations
California State Fisheries Laboratory
Terminal Island, California

Herrn Professor Dr. A. Defant
Sternwartestrasse 38
Innsbruck
Austria
Chief
Division of Biological Research
U. S. Fish and Wildlife Service
Bureau of Commercial Fisheries
Washington 25, D. C.

Dr. Richard H. Fleming
University of Washington
Oceanographic Laboratories
Seattle 5, Washington

Dr. Paul M. Fye
Woods Hole Oceanographic Institution
Woods Hole, Massachusetts

Mr. John Hawk
c/o Seafarers' International Union of North America
450 Harrison Street
San Francisco 5, California

Mr. T. Hirano
Tokai Regional Fisheries Research Laboratory
Tsukishima
Tokyo, Japan

Mr. John D. Isaacs
Program Director, Marine Life Research
University of California
Scripps Institution of Oceanography
La Jolla, California

Japan Meteorological Agency
Oceanographical Section
Tokyo, Japan

Dr. H. Kitamura
Oceanographic Section
Kobe Marine Observatory
Kobe, Japan

Director of Research
Fish Commission of Oregon
Route 1, Box 31A
Clackamas, Oregon

Mr. Jeffery D. Frautschy
University of California
Scripps Institution of Oceanography
La Jolla, California

Hancock Library of Biology and
Oceanography
Allan Hancock Foundation
University of Southern California
Los Angeles 7, California

Dr. Robert W. Hiatt
University of Hawaii
Honolulu, Hawaii

Director
Instituto de Geofísica
Torre de Ciencias, 3er piso
Universidad Nacional Autónoma de México
Villa Obregón, D. F.
México

Mr. Milton C. James
Pacific Marine Fishery Commission
340 State Office Building
1400 S. W. Fifth Avenue
Portland 1, Oregon

Dr. Martin W. Johnson
University of California
Scripps Institution of Oceanography
La Jolla, California

Mr. Hans T. Klein
University of California
Scripps Institution of Oceanography
La Jolla, California
Mr. Don Powell
Bureau of Commercial Fisheries
2725 Montlake Boulevard
Seattle 2, Washington

Mr. John Radovich
California Department of Fish and Game
California State Fisheries Laboratory
Terminal Island, California

Dr. Roger Revelle
University of California
Scripps Institution of Oceanography
La Jolla, California

Dr. Gordon A. Riley
Bingham Oceanographic Foundation
Yale University
New Haven, Connecticut

Mr. Gunnar I. Roden
University of California
Scripps Institution of Oceanography
La Jolla, California

Dr. M. B. Schaefer
Inter-American Tropical Tuna Commission
c/o Scripps Institution of Oceanography
La Jolla, California

Dr. O. E. Sette, Chief
Bureau of Commercial Fisheries
Biological Laboratory
450-B Jordan Hall
Stanford, California

Mr. W. E. Stewart
c/o California State Chamber of Commerce
350 Bush Street
San Francisco 4, California

Dr. D. W. Pritchard, Director
Chesapeake Bay Institute
The Johns Hopkins University
121 Maryland Hall
Baltimore 18, Maryland

Mr. Joseph L. Reid, Jr.
University of California
Scripps Institution of Oceanography
La Jolla, California

Mrs. Margaret K. Riedel
University of California
Scripps Institution of Oceanography
La Jolla, California

Mrs. Margaret K. Robinson
University of California
Scripps Institution of Oceanography
La Jolla, California

Mr. Don T. Saxby
California Division
California Packing Corporation
2600 Seventh Street
Berkeley 10, California

Mr. Richard A. Schwartzlose
University of California
Scripps Institution of Oceanography
La Jolla, California

Mr. D. Shoji
Japanese Hydrographic Office
Tsukiji
Tokyo, Japan

Mr. Henry M. Stommel
Woods Hole Oceanographic Institution
Woods Hole, Massachusetts
Miss Margaret Storey, Librarian
Natural History Museum
Stanford, California

Dr. Y. Takenouti
Oceanographical Section
Japan Meteorological Agency
Chuo-ku
Tokyo, Japan

Mr. Norman Tebble
Annelida Section
British Museum (Natural History)
Cromwell Road
London SW7, England

Department of Oceanography
Texas A. and M. College
College Station, Texas

Dr. John P. Tully
Pacific Oceanographic Group
P. O. Drawer 6
Nanaimo, B. C.
Canada

Dr. M. Uda
Tokyo University of Fisheries
Minato-ku
Tokyo, Japan

Librarian
Bureau of Commercial Fisheries
Biological Laboratory
P. O. Box 3830
Honolulu 12, Hawaii

U. S. Hydrographic Office (2)
Navy Department
Washington 25, D. C.
Attn: Dr. John Lyman

Library, Code 2400 (2)
U. S. Navy Electronics Laboratory
San Diego 52, California

University of California (2)
Department of Zoology
Berkeley 4, California

Library
University of California
Scripps Institution of Oceanography
La Jolla, California

Director
University of Miami
Marine Laboratory
Coral Gables, Florida

University of California (2)
Serials Department
General Library
Berkeley 4, California

Librarian (2)
University of Washington
Oceanographic Laboratories
Seattle 5, Washington
Dr. E. Koto
Institute of Fisheries
Hokkaido University
Hakodate, Japan

Mr. Joseph Mardesich
Franco-Italian Packing Company
Fish Harbor Wharf
Terminal Island, California

Dr. J. L. McHugh
Virginia Fisheries Laboratory
Gloucester Point, Virginia

Mr. Arthur H. Mendonca
c/o R. E. Booth Company, Inc.
280 Battery Street
San Francisco 11, California

Mr. John V. Morris
French Sardine Company
582 Tuna Street
Terminal Island, California

Dr. A. W. H. Needler, Director
Pacific Biological Station
Nanaimo, B. C.
Canada

Dr. Robert M. Norris
Department of Physical Sciences
University of California
Santa Barbara Campus
Goleta, California

Pusan Fisheries College
Pusan
Korea

Chief of Naval Research
Office of Naval Research
Geophysics Branch
Washington 25, D. C.

Dr. E. C. La Fond
Code 2235
U. S. Navy Electronics Laboratory
San Diego 52, California

Mr. John C. Marr
Bureau of Commercial Fisheries
Biological Laboratory
P. O. Box 3830
Honolulu 12, Hawaii

Dr. H. J. McLellan
Atlantic Oceanographic Group
St. Andrews, New Brunswick
Canada

Dr. R. C. Miller, Director
California Academy of Science
Golden Gate Park
San Francisco 18, California

National Marine Consultants, Inc.
Administration Airport
Goleta, California
Attn: Dr. R. Kent

Mr. Kenneth S. Norris, Curator
Marineland of the Pacific
Portuguese Bend
Marineland, California

Director
Norwegian Polar Institute
Observatoriet 1
Oslo, Norway

Dr. Yngve H. Olsen
Journal of Marine Research
Yale University
New Haven, Connecticut

Dr. E. L. Pickard
Institute of Oceanography
University of British Columbia
Vancouver, B. C.
Canada
Director
University of Washington
School of Fisheries
Seattle 4, Washington

Mr. Richard C. Vetter
Secretary to the Committee
on Oceanography
National Academy of Sciences
2101 Constitution Avenue
Washington 25, D. C.

Dr. Boyd W. Walker
University of California
Department of Zoology
Los Angeles 24, California

Dr. Warren S. Wooster
University of California
Scripps Institution of Oceanography
La Jolla, California

Dr. Kozo Yoshida
Geophysical Institute
Tokyo University
Bunkyo-ku
Tokyo, Japan

Mr. Gilbert C. Van Camp, Sr.
772 Tuna Street
Terminal Island, California

Dr. Lionel A. Walford, Chief
Atlantic Fishery Oceanographic
Research Center
Bureau of Commercial Fisheries
734 Jackson Place, N. W.
Washington 25, D. C.

Mr. William E. Warne
California Department of Fish and Game
926 J Street
Sacramento 14, California

Mr. Charles G. Worrall (20)
University of California
Scripps Institution of Oceanography
La Jolla, California