Modeling larval northern anchovy (*Engraulis mordax***)** abundance distributions using fine-resolution imagery data

Luke A. Bobay, Moritz S. Schmid, Robert K. Cowen, Su Sponaugle Plankton Ecology Laboratory, Hatfield Marine Science Center, Oregon State University

Motivation

- Modeling anchovy abundance distributions will aid in anticipation of climate change effects on populations
- Models must adequately capture mechanistic drivers that underpin response to environment
- Larval anchovy abundance distributions are difficult to predict under novel environmental conditions¹

Results

- CV RF r = 0.35, OOB RF r = 0.36
- Depth allowed greatest reduction in node impurities (Fig. 5)
- RF was more likely to predict high anchovy abundance at:
 - Shallow depths
 - High dissolved oxygen
 - High chlorophyll a

Fine-scale abundance data may allow more accurate characterization of mechanistic drivers of abundance

Fig. 1. Coupled 1-m² and 4-m² Multiple Opening/Closing Net and Environmental Sensing System (MOCNESS)

Fig. 2. The In Situ Ichthyoplankton Imaging System (ISIIS), which uses two shadowgraph cameras and environmental sensors to measure fine-scale plankton abundance and physical parameters.

Fig. 3. Clupeiformes larvae imaged by ISIIS, which cannot be distinguished to species in *IS*IIS images.

- Extreme salinities
- High temperatures
- Offshore and extreme inshore locations

Fig. 5. Variable importance plot of predictors included in model fit to randomly selected 75% of ISIIS larval anchovy abundance observations. Bars indicate the total increase in node purity (Gini index) averaged across all trees for each predictor.

Data Collection

- Winter and summer 2018– 2019
- MOCNESS to collect larvae (25-m depth strata)
- In Situ Ichthyoplankton Imaging System (ISIIS) to collect fine-scale (1-m) larval clupeiform abundance in top 100 m across 17 transects (>120 km each)

Use MOCNESS to distinguish between ISIIS clupeiform larvae

• Separate random forests (RFs) were fit to summer 2019 MOCNESS anchovy and sardine abundance data

Longitude

Fig. 6. Partial effect plots for a subset of predictors included in RF fit to randomly selected 75% of ISIIS larval anchovy abundance observations. Hash marks indicate deciles of predictors. Note: Y-axis scales differ among plots.

Conclusions and Future Directions

- Similar performance of CV and OOB RFs suggest negligible influence of autocorrelation on model performance
- Partial effect plots (Fig. 6) support hypothesized effects of most important predictors (*e.g.*, depth, oxygen, chlorophyll)
 - Unexpected effect of salinity
- Low predictive performance may indicate that other ecological factors (*e.g.*, currents, predators) are also important • Time lags may obscure relationships between larval anchovy abundance and environmental conditions
- Predictors: temperature, salinity, depth, latitude, longitude
- Applied ratio of predicted anchovy to sardine abundance during co-occurrence to ISIIS clupeiform abundance

Predict ISIIS larval anchovy abundance

- RF fit to random 75% of ISIIS larval anchovy (corrected clupeiform) abundance data
 - Out-of-bag (OOB) testing to assess predictive performance
- 4-fold spatially and temporally blocked cross-validation on withheld 25% of data
 - Assess influence of autocorrelation on model performance
- Predictors: temperature, salinity, chlorophyll a, dissolved oxygen, depth, latitude, longitude, season, year

- Zero inflation may be addressed using a two-step model
- Other modeling frameworks (*e.g.*, SDMTMV) may be useful

Acknowledgements

We thank the crews of R/V Sikuliaq, R/V Sally Ride, and R/V Atlantis for their professionalism at sea. Funding provided by the National Science Foundation, Award Number 1737399.

Reference

Muhling, B. A., et al. 2020. Predictability of species distributions deteriorates under novel environmental conditions in the California Current system. Front. Mar. Sci. 7:589.

