

Sea-Bird Electronics, Inc. 1808 136th Place NE Bellevue, WA 98005 USA Phone: (425) 643-9866 Fax: (425) 643-9954 E-mail: seabird@seabird.com Web: www.seabird.com

APPLICATION NOTE NO. 11 QSP-L

Revised June 2005

Calculating Calibration coefficients for Biospherical Instruments PAR Light Sensor with Built-In Log Amplifier

This application note applies to the following Biospherical Instruments PAR light sensors, which all have a built-in log amplifier:

- QSP-200L and QCP-200L no longer in production
- QSP-2300L, QCP-2300L, and MCP-2300 current production

These PAR sensors are compatible with the following Sea-Bird CTDs:

- SBE 9plus
- SBE 16 or 19 These PAR sensors may not be compatible with 6-cell housing version of these CTDs; consult Sea-Bird.
- SBE 16*plus*, 16*plus*-IM, or 19*plus* CTD's optional PAR connector not required when using one of these PAR sensors. The PAR sensor interfaces with an A/D voltage channel on the CTD.
- SBE 25 CTD's PAR connector (standard on current production SBE 25s, optional on older versions) not used with these PAR sensors. The PAR sensor interfaces with an A/D voltage channel on the CTD.

Note: The CTD voltage channel for use with the PAR sensor can be single-ended or differential.

SEASOFT computes PAR using the following equation:

PAR = [multiplier * (10⁹ * 10^{(V-B) / M}) / calibration constant] + offset

Enter the following coefficients in the CTD configuration (.con) file:

 $\mathbf{M} = 1.0 \quad \text{and} \quad \mathbf{B} = 0.0 \quad (\text{Notes 2 and 3}) \\$ **calibration constant** $= 10⁵ / Cw \quad (\text{Notes 2 and 4}) \\$ **multiplier** $= 1.0 for output units of µEinsteins/m²·sec \quad (Note 5) \\$ **offset** $= - (10⁴ * Cw * 10^V) \quad (Note 6)$

Notes:

- 1. Edit the CTD configuration (.con) file using the Configure menu (in SEASAVE or SBE Data Processing in our SEASOFT-Win32 suite of programs) or SEACON (in SEASOFT-DOS).
- 2. Sea-Bird provides two calibration sheets for the PAR sensor in the CTD manual:
 - Calibration sheet generated by Biospherical, which contains Biospherical's calibration data.
 - Calibration sheet generated by Sea-Bird, which incorporates the Biospherical data and generates M, B, and calibration constant needed for entry in Sea-Bird software (saving the user from doing the math).
- 3. For all SBE 911*plus*, 16, 16*plus*, 16*plus*-IM, 19, 19*plus*, and 25 CTDs, M = 1.0. For SBE 9/11 systems built before 1993 that have differential input amplifiers, M = 2; consult your SBE 9 manual or contact factory for further information. B should always be set to 0.0.
- 4. Cw is the wet μ Einsteins/cm²·sec/"amps" coefficient from the Biospherical calibration sheet. A typical value is 4.00 x 10⁻⁵.
- 5. The multiplier can be used to calculate irradiance in units other than μ Einsteins/m² sec. See Application Note 11General for multiplier values for other units.

The multiplier can also be used to *scale* the data, to compare the *shape* of data sets taken at disparate light levels. For example, a multiplier of 10 would make a 10 μ Einsteins/m² sec light level plot as 100 μ Einsteins/m² sec.

6. Offset (μ Einsteins/m²·sec) = - (10⁴ * Cw * 10^V), where V is the *dark voltage*.

For typical values ($Cw = 4.00 \times 10^{-5}$ and Dark Voltage = 0.150), offset = -0.5650. The dark voltage may be obtained from:

- Biospherical calibration certificate for your sensor, or
- CTD PAR channel with the sensor covered (dark) -- in SEASAVE, display the voltage output of the PAR sensor channel.

Instead of using the dark voltage to calculate the offset, you can also directly obtain the offset using the following method: Enter M, B, and Calibration constant, and set offset = 0.0 in the .con file. In SEASAVE, display the *calculated PAR output* with the sensor dark; then enter the negative of this reading as the offset in the .con file.

Mathematical Derivation

- 1. Using the sensor output in volts (V), Biospherical calculates: light (μ Einsteins/**cm**²·sec) = Cw * (10 ^{Light Signal Voltage} - 10 ^{Dark Voltage}).
- 2. SEASOFT calculates: light (μ Einsteins/ \mathbf{m}^2 ·sec) = [multiplier * 10⁹ * 10^{(V-B)/M}/Calibration constant] + offset where M, B, Calibration constant, multiplier, and offset are the SEASOFT coefficients entered in the CTD configuration file.
- 3. To determine Calibration constant, let B = 0.0, M = 1.0, and multiplier = 1.0. Equating the Biospherical and SEASOFT relationships:
 10⁴ (cm²/m²)* Cw * (10 ^{Light Signal Voltage} 10 ^{Dark Voltage}) = (10⁹ * 10^V) / Calibration constant + offset

Since offset = - $(10^4 * Cw * 10^{\text{Dark Voltage}})$, and V = Light Signal Voltage: Calibration constant = $10^9 / (10^4 * Cw) = 10^5 / Cw$

Example: If Wet calibration factor = $4.00 \times 10^{-5} \mu \text{Einsteins/cm}^2$ sec, then C = 2,500,000,000 (for entry into .con file).

Notes:

- See Application Note 11S for integrating a Surface PAR sensor with the SBE 11*plus* Deck Unit (used with the SBE 9*plus* CTD).
- See Application Note 47 for integrating a Surface PAR sensor with the SBE 33 or 36 Deck Unit (used with the SBE 16, 16*plus*, 19, 19*plus*, or 25 CTD).