
B1  Introduction
This appendix explains the bootstrapping methods 

used to estimate the annual variability of the early life-
history parameters: production at the time of hatching 
(Ph), the coefficient of larval mortality (β), egg instanta-
neous mortality (IMR) (α) and the daily egg production 
(P0). Mortality curves estimated in the main manuscript 
(section 2.2.1), used a Pareto type mortality curve (this 
regression will be referred to as MC 0). The iterative pro-
cedure used to identify the egg IMR (α) (equation 2) 
and the calculation of P0 (equation 3) yields only point 
estimates for α and P0. Lo (1985a) approached the prob-
lem of estimating variability for these point estimates 
using an approximation based on the delta method. 
When applied to our data the standard errors produced 
were too large to be meaningful, frequently displaying a 
coefficient of variation greater than 1. 

The bootstrap is used to provide more precise esti-
mates of the variability using confidence intervals of 
the bootstrapped distributions. An advantage of this 
approach is that it characterizes confidence intervals for 
a general class of true underlying distributions, in par-
ticular accurate interval construction is more robust to 
fat tails and extreme tail events. The residual bootstrap 
method (MacKinnon 2006) is used, which samples from 
the residual empirical cumulative distribution function 
(cdf) of MC 0 and applies the resampled residuals to the 
fitted daily larval production estimates d̂lp to for boot-
strapped  d̂lp *, on which new mortality curves with new 
parameters were estimated. Normalization is required to 
stabilize the heteroskedasticity in the residual distribu-
tion. When applied to equations 1–3 annual bootstrap 
distribution of β, Ph,  α, and P0 are created from which 
we take the 0.025 and 0.975 quantiles as the 95% con-
fidence interval of the associated statistics.

The results of methods used in this appendix are 95% 
confidence intervals for β, Ph, α, and P0. In addition, 
the residual analysis necessary for the heteroskedastic-
ity stabilization is discussed in the results and discus-
sion section.

The next section describes the bootstrapping methods 
in detail. Section three reports some of the intermediate 
estimation results and section four discusses the methods 
used and the residual distribution. Confidence intervals 
were referenced in the text of the main manuscript and 
can be found in table 1, and figure 4.

B2  Methods 
The residual bootstrap uses the empirical cdf of the 

residuals from the initial estimation of the mortality 

curve MC0 (section 2.2.1) as a measure of the true error 
term associated with larval mortality estimation. Residu-
als are given by
	
^	 ^	 ^	 ^

	 ^

εc,s = dlpc,s  – dlpc,s, where dlpc,s = Ph,s (tc,s ∕ t I
s )

–β
s  	(B1)

and ^βs and ^Ph,s are the annual (s = 1981, 1982, …, 2009) 
estimated parameter values relating daily larval produc-
tion (dlpc,s) to larval ages (tc,s) over the incubation time 
(tI

s) for larval size class (c ∈{larval class 2.5 mm, 3.75 mm, 
…, 9.75 mm}) (appendix A1 and table A1). 

There were eight larval size classes in a year and sim-
ply resampling from the eight residuals on that year 
would not provide a sufficiently rich set of residuals to 
characterize the true residual distribution. Furthermore, 
size class dependent heteroskedasticity precluded resa-
mpling from this small set of residual. To overcome this 
residuals from all 29 years of mortality estimation nor-
malized by exploiting the longitudinal structure were of 
the residual data. Linear approaches to bootstrap nor-
malization are not applicable for nonlinear regression 
(MacKinnon 2006)1. We use a linear regression with ages 
and years as independent variables to model the hetero-
skedasticity and purge the residuals of class and temporal 
dependence. Higher-order polynomial terms and other 
categorical variables were tried, and a first-order linear 
regression minimized the AIC criterion. The heteroske-
dasticity stabilizing regression is:

		  ^		  s – mean(s)	 ωc,s =	|εc,s|	,  ys =	
				    stdev(s)

	 ωc,s = θ0 + θ1tc,s + θ2ys + θ3D2s + νc,s	 (B2)
        

where ωc,s is the absolute deviation of the residual, ys is 
the normalized year, tc,s is the larval size class age, D2s 
is a categorical 0–1 variable capturing the anomalous 
years 2005 and 2006 (D2s = 1) (section 2.3) and νc,s is 
the error term. Outliers exerted excessive leverage and 
led to a poor fit. Outliers were determined from a pre-
liminary regression of B2 as observations associated with 
a preliminary residual z-score greater than six, 6 ≤ ν̂c,s –

mean0.01(ν̂)/stdev0.01(ν̂) (where the 0.01 subscript indicates a 
trimmed mean/standard deviation). This identified three 
observations as outliers. Equation B2 was then fit with 
outliers removed to determine the final fit. The fitted 
root-squared residuals were then used to normalize the 
residuals distribution.
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Appendix B: Bootstrapping mortality parameters

1E.g. using the diagonal element of the hat data matrix X(X'X)X' where X is 
the data matrix used in liear regression.
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and the incubation time (t I
s ) to determine the egg IMR 

(α̂s
*) by iterative method (section 2.2.1, equation 2).

		  ms		  eαs*tIs  – 1	 α̂s
* is the αs such that	 	 =	 	 (B7)

	 	
^Ph,s

* 		  αs

Bootstrapped ^P0,s
* was obtained by the calculation 

(section 2.2.1, equation 3):

	 ^P0,s
* = ^Ph,s

* e α̂s**tI	 (B8)

The preceding bootstrap algorithm (equations B1–
B6) was repeated 1000 times. On occasion, some of 
the bootstrap residuals (ε*

c,s) would be sufficiently nega-
tive to produce a daily larval production value less than 
zero (dlp*

c,s < 0) which was treated as if no larvae were 
observed for that class. If this happened for more than 
two size classes during an iteration then that iteration 
was discarded and repeated. If NLS failed to converge 
or βs was estimated to be positive (illogical curvature of 
the mortality curve) or βs < –3 (suggesting convergence 
in a bad area of the parameter space) then a log linear-
ization was performed and parameters were estimated 
using OLS. Final estimates of Ph,s were then calculated 
assuming normality of log(Ph,s) (i.e. Ph,s is log normally 
distributed).

This algorithm produced bootstrap distributions 
({^βs

*}, {^Ph,s
*}, {^αs

*}, {^P0,s
*}) each with 1000 obser-

vations. The 0.025 and 0.975 quantiles of these distri-

	 ~εc,s = εc,s
 /|̂ωc,s|		  (B3)

where 

	 ω̂c,s = θ̂0 + θ̂1tc,s + θ̂2ys + θ̂3D2s	 (B4)

This procedure produces a set (29 years x 8 classes 
= 232) of temporally and class “independent” residu-
als forming a distribution that was used to perform the 
bootstrapped. For each year s, eight residuals (one for 
each size class) were randomly sampled with replace-
ment from the set of residual, εBS∈{~εc,s}. Residuals were 
centered and rescaled to the have the size class and tem-
poral variance as determined by equation B4. The new 
resampled residuals were added to the fitted daily larval 
production from the initial estimation stage (equation 1 
and B1) to obtain bootstrapped DLP estimates.
	 	

1		  8	 εBS ' = εBS –	 	∑		 ε
i
BS , ε*

c,s = εBS ' *| ω̂c,s|, 
		

8
		  i = 1

	
and dlp*

c,s = d̂lpc,s + ε*
c,s	 (B5)

The bootstrapped DLP dlp*
c,s estimates were then used 

to fit a new mortality curve.
	

^
	 ^*

dlpc,s
* = Ph,s

*  (tc,s ∕ t I
s )

–β
s  	 (B6)

The estimated production at the time of hatching  
^Ph,s

* was then used with the standing stock of eggs (ms) 
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Figure B1.  Larval mortality residuals (from equation 1) over the average size-class ages (tc,s) (left panel), and normalized years (ys) (right panel) 1981–2009.
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ginal increases in the number of iterations to 1500 and 
2000 iteration failed to noticeably change the distribu-
tion or confidence intervals from it.

Bootstrapped confidence intervals were referenced 
in the text of the main manuscript and can be found in 
table 1, and figure 4.

B4 Discussion
Residual bootstrapping treats the empirical distribu-

tion formed by the set of residuals as sufficient for the 
true distribution. Resampling randomly reassigns residual 
from other classes and times to the fitted dlp estimates. 
Failing to account for the class and temporal differences 
in the residual distribution would introduce spurious 
variation into the residuals upon resampling for the 
bootstrap. The linear model for the heteroskedasticity 
is based on a Breusch-Pagan test for heteroskedasticity 
(Breusch-Pagan 1979), except it uses the absolute devia-
tion. The normalization is identical to the normalization 
performed in a feasible weighted least squares hetero-
skedasticity correction (Cameron and Trivedi 2005). The 
heteroskedasticity stabilizing regression appears to have 
stabilized the variation as indicated by the more homo-
geneous variance (fig. B2). The heavy tails or extreme 
tail events of the normalized residual distribution is quite 
likely a feature of the true mortality error distribution 
which should be retained during resampling.

An implied assumption in this approach of the estima-
tion variability for P0 and α is that all variability comes 
from random error at the larval stage, εc,s (equation 1). 

butions were taken as a nonparametric estimate of their 
respective 95% confidence intervals. 

B3 Results 
The residuals from MC0 (section 2.2.1, equation 1) 

displayed heteroskedasticity across both ages and years 
(fig. B1). Coefficient estimates for the heteroskedasticity 
stabilizing regression support the visual observation of a 
decreasing volatility with both age and time (table B1). 

Based on the observed heteroskedasticity in the resid-
uals, failing to stabilize the class and temporally depen-
dent variation would introduce spurious nonstationarity 
into the residuals upon resampling for the bootstrap. The 
heteroskedasticity stabilizing regression (equation B2) 
does an acceptable job of modeling the heteroskedas-
ticity in MC0 (table B1). Graphical analysis shows that 
dispersion around the mean is more evenly distributed 
(fig. B2) after the variance stabilization. Outliers are still 
outliers in the normalized residuals as they were inten-
tionally removed during the regression. The normalized 
residual distribution is still highly leptokurtotic even 
with the outliers removed with a kurtosis of 12.08 (a 
standard normal distribution has a kurtosis of 3). Thus, 
heavy tails and extreme tail events are still a feature of 
the residual distribution used for resampling. 

The grid search algorithm over initial condition dur-
ing the NLS estimation (section 2.23) made more itera-
tions computationally prohibitive in R. Furthermore, it 
was verified through histograms of 1000 iterations per-
year that the number of iterations was sufficient. Mar-
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Figure B2.  Larval mortality residuals over average size-class ages from hatching (tc,s) (left panel), and normalized years (ys) (right panel) after normalization.
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tively, our bootstrapped distributions can be interpreted 
as conditional on the observed m and t I.

Calculations of higher order moments (such as the 
variance) of the data can be particularly sensitive to 
extreme tail events. Thus, confidence intervals for param-
eter estimates can have poor coverage when constructed 
using standard errors based on a distribution prone to 
extreme tail events. The large standard error estimates 
for αs and P0 based on the delta method were likely 
the result of the heavy-tailed distributions. Furthermore, 
extreme events can also result in uncentered distribu-
tions. We obtain accurate coverage for parameter con-
fidence intervals by reporting bootstrapped confidence 
intervals in place of the regression standard errors for the 
NLS estimation of MC0 (equation 1).
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Other potential sources of variation in P0 and α were 
explored. The calculation of P0 and the iterative method 
for α are simple definitional relationships and any error 
in the methods for the point estimates calculated after 
mortality estimation is negligible. The standing stock of 
eggs (m) and incubation time (t I) are also used in HEP 
estimation and can potentially have a stochastic compo-
nent. Reduced form attempts to model this stochasticity, 
that attempted to exploit the spatial variation over sta-
tion within a year, were explored. A residual bootstrap 
method was again used with residual taken as deviation 
from a reduced form spatial model such as a spatial mov-
ing average process, spatial autoregressive process or a 
spatial distributed lag process. The results were that some 
additional variation was introduced but did not widen 
the confidence intervals for the parameters of interest 
significantly. The ad-hoc nature of this approach cou-
pled within its marginal contribution led us to abandon 
this approach. Furthermore, aggregation over samples, 
cruises, and stations is likely to smooth the stochasitic 
components of m and t I. Thus, we assume that the calcu-
lated values of m and t I are accurate annual statistics for 
the region in the sense that randomness in sampling or 
other sources is minimized by the aggregation. Alterna-
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