data report

PHYSICAL, CHEMICAL AND CURRENT METER DATA

CalCOFI CRUISE 7601 6-7 January 1976

CalCOFI CRUISE 7602 16-20 February 1976

CRUISE 7603 (TWATE III) 30 March-2 April 1976

CRUISE 7604 17 April-10 May 1976

CRUISE 7611 11 November 1976

SIO Reference 88-4 29 February 1988

UNIVERSITY OF CALIFORNIA SCRIPPS INSTITUTION OF OCEANOGRAPHY

PHYSICAL, CHEMICAL AND CURRENT METER DATA

CalCOFI CRUISE 7601 6-7 January 1976

CalCOFI CRUISE 7602 16–20 February 1976

CRUISE 7603 (TWATE III) 30 March-2 April 1976

CRUISE 7604 16 April-10 May 1976

CRUISE 7611 11 November 1976

SIO Reference 88-4 29 February 1988

Approved for distribution:

Edward A. Frieman, Director

CONTENTS

Introduction	
Literature Cited	
CalCOFI Cruise 7601	
Figure 1, Station Positions	
Personnel	
Current Meter Data	
Tabulated Data	
CalCOFI Cruise 7602	
Figure 2, Station Positions	
Personnel	
Tabulated Data	
Cruise 7603 (TWATE III)	
Figure 3, Station Positions	
Personnel	
Tabulated Data	
Cruise 7604	
Figure 4, Station Positions	
Personnel	
Tabulated Data	
Cruise 7611	
Figure 5, Station Positions	
Personnel	
Tabulated Data	

INTRODUCTION

The data in this report were collected during CalCOFI Cruises 7601* and 7602, and Cruises 7603 and 7604 aboard the RV Alexander Agassiz, and Cruise 7611 aboard the RV Ellen B. Scripps of the Scripps Institution of Oceanography, University of California, San Diego. Although all these cruises were in the area of the California Cooperative Oceanic Fisheries Investigations (CalCOFI), only during 7601 and 7602 were planned CalCOFI station positions occupied. Cruise 7603 was a Two-Way Acoustic Transmission Experiment (TWATE III) on which the principle work accomplished was sound velocity analyses in the vicinity of locations 33°N, 118°W and 31°N, 120°W. The object of Cruise 7604 was to investigate eddies in the California Current, to determine their size, their movement in relationship to other currents, and the length of time they remain a distinguishable feature. A series of airborne expendable bathythermographs (AXBTs) used in a program to observe the thermal structure in the Central Pacific were calibrated by comparison with eight STD lowerings during Cruise 7611. This field program has been described in SIO Reference 76-19, Observation of Thermal Structure in the Central Pacific, T. P. Barnett, M. H. Sessions, and P. M. Marshall.

These data were collected and processed by personnel of the Data Collection and Processing Group, Marine Life Research Group (DCPG**, MLRG), Scripps Institution of Oceanography.

STANDARD PROCEDURES

The difference in purpose of the five cruises in this report results in a variation of the data collected. Hydrographic casts were made on all cruises but varied from only one cast of eight Nansen bottles on the STD wire for Cruise 7601 to 20 casts of 18 Nansen bottles on the hydrographic wire for Cruise 7604. Temperature and salinity were determined for all depths sampled. Oxygen and nutrients were determined for Cruise 7602 only. On Cruise 7601 the four free vehicle current meters which had been deployed during CalCOFI Cruise 7510 were recovered.

On STD lowerings during Cruises 7601, 7602, 7603, and 7611 where hydrographic casts were not made, a Nansen bottle was usually placed a few meters above the STD and another bottle was lowered to approximately 10 meters. During Cruise 7602, both down and up recordings from the STD were made on two separate DDL systems as well as analog traces for all lowerings.

Paired protected reversing thermometers were used on all Nansen bottle casts to determine temperatures which are recorded to hundredths of a degree Celsius. Sampling bottles used below a depth of 100 meters were equipped with unprotected thermometers for determination of depth of sampling.

Salinity samples were determined at sea using inductive-type salinometers. The salinity values are recorded to three decimal places.

Dissolved oxygen on Cruise 7602 was determined by the Winkler method as modified by Carpenter (1965), using the equipment and procedure outlined by Anderson (1971).

Silicate, nitrate and nitrite for Cruise 7602 were determined at sea using an automated analyzer. The procedures used are similar to those described in Atlas *et al.* (1971). Phosphate samples were determined using a Gilford modified DU spectrophotometer. Reactive phosphate was analyzed using the method of Murphy and Riley (1962), with the specific procedure outlined by Anderson (1971).

The observed data have been evaluated using the methodology described by Klein (1973). This involves consideration of their variation as functions of density or depth and their relations to each other, and comparisons with adjacent observations.

The STD data for Cruises 7601, 7604, and 7611 were processed by computer from the DDL recordings and appear to compare well with the hydrographic data. Although extra effort was made on Cruise 7603 to compare the STD recordings on two separate DDL instruments, the tabulated data were digitized from the analog traces and also

The first two digits represent the year and the last digits the month of the cruise.

^{**} Now the Oceanographic Data Facility (ODF).

appear to compare well with the hydrographic data.

TABULATED DATA

The reported hydrographic cast time is the Greenwich Mean Time (GMT) of the messenger release. Bottom depths, determined acoustically, have been corrected using Matthews (1939) tables and are reported in meters. Weather conditions have been coded using WMO code 4051.

Data tabulations are presented in the following forms:

- Data from the sample bottle casts are tabulated with the observed levels of depth on the left of the page, and standard depth values of temperature, salinity and oxygen interpolated from these observations are on the right of the page. Additional computed values are also presented.
- 2) Data from the STD lowerings are presented with two stations printed side by side. Temperature and salinity are tabulated at closer standard intervals than the interpolated standard depth bottle data. Additional computed values are also presented.
- 3) Calibration of the AXBTs on Cruise 7611 required the data from the STD to be tabulated at approximately 10 meter intervals of depth. The additional computed values are tabulated for each depth.
- 4) Current meter speed and direction data were calculated over one-half-hour intervals. This report includes only the resultant speeds and directions for the entire record lengths.

The same parameters have been tabulated in this report as in previous reports. Cruises 7601 and 7602 have the CalCOFI station designations which have been in use for over thirty years. The first part specifies a line normal to the general trend of the coastline (CalCOFI line). The second part specifies a station position relative to the coast on the CalCOFI line. On some closely-spaced special inshore stations, an additional superscript number may appear after the line number or station number to indicate a finer resolution of the non-standard station location.

The column headings are to be interpreted as follows:

Z	Depth	Meters
T	Temperature	°C
S	Salinity	
O2	Dissolved Oxygen	‰ ml/L
PO4	"Reactive" inorganic phosphate-phosphorous	μg at/L
SiO3	"Reactive" inorganic silicate-silicon	
NO2	"Reactive" nitrite-nitrogen	μg at/L
NO3	"Reactive" nitrate-nitrogen	μg at/L
DT	δ _T Thermosteric anomaly	μg at/L
SIGT	$\sigma_t = (\rho_{s,t,0} - 1) 10^3$ where $\rho_{s,t,0}$ is the	cl/ton
	density the parcel of sea water would have	g/L
	if moved isothermally to the sea surface.	
DD	Geopotential anomaly, referred to the sea surface.	dyn. meters

LITERATURE CITED

- Anderson, G. C., compiler, 1971. "Oxygen Analysis," Marine Technician's Handbook, SIO Ref. No. 71-8, Sea Grant Pub. No. 9.
- Anderson, G. C., compiler, 1971. "Phosphate Analysis," Marine Technician's Handbook, SIO Ref. No. 71-10, Sea Grant Pub. No. 11.
- Atlas, E. L., J. C. Callaway, R. D. Tomlinson, L. I. Gordon, L. Barstow, and P. K. Park, 1971. A Practical Manual for Use of the Technicon^R AutoAnalyzer^R in Sea Water Nutrient Analysis; Revised. Oregon State University Technical Report 215, Reference No. 71-22.
- AutoLab Ind. Pty. Ltd., Sydney, 1960. Inductively Coupled Salinometer MK 111, Model 601, Operating Inst. and Ills. Parts List.
- Bissett Berman Corporation, 1967. Operation and Maintenance Manual, Laboratory Salinometer Model 6220.
- Bissett Berman Corporation, 1970. Instruction Manual, Laboratory Salinometer Model 6230N.
- Carpenter, J. H., 1965. The Chesapeake Bay Institute technique for the Winkler dissolved oxygen method. Limnol. Oceanogr., 10: 141-143.
- Klein, Hans T., 1973. A new technique for processing physical oceanographic data. SIO Ref. No. 73-14.
- Matthews, D. J., 1939. Tables of the velocity of sound in pure water and seawater for use in echo-sounding and sound-ranging. Second Edition. Hydrographic Department, Admiralty, H. D. 282, 52 pp.
- Murphy, J., and J. P. Riley, 1962. A modified single solution method for the determination of phosphate in natural waters. *Anal. Chem. Acta*, 27: 31.
- Plessey Environmental Systems, 1974. Instruction Manual, In situ Salinity/Temperature/Depth Monitoring and Recording System, Model 9040.
- Strickland, J. D. H., and T. R. Parsons, 1968. A practical handbook of seawater analysis. Fish. Res. Brd. Can., Bull., 167: 311 pp.
- Sverdrup, H. U., M. W. Johnson, and R. H. Fleming, 1942. The Oceans: their Physics, Chemistry, and General Biology. Prentice-Hall, New Jersey, 1087 pp.

PERSONNEL

CalCOFI Cruise 7601

SHIP'S CAPTAIN

Davis, Laurence E., RV Alexander Agassiz

PERSONNEL PARTICIPATING IN THE COLLECTION OF DATA

Muus, David A.

Staff Research Associate, SIO

(in charge)

Singleton, James R. Electronics Technician, SIO

CURRENT METER DATA

				Corrected	Meters			Mean Vector		
No.	Latitude °N	Longitude °W	Between Stations	Sounding (m)	off Bottom	Start Date	Total Hours	Direction (°T)	Speed (cm/s)	
1-E	34°25.5	120°34.5	80 51.4-80 52.0	150	50	15 Nov. '75	366	334	2.4	
2-D	34°24.6	120°35.8	80 52.0-80 52.2	239	50	15 Nov. '75	518	353	1.3	
3-C	34°23.6	120°37.2	80 52.2-80 52.8	347	50	15 Nov. '75	551	110	0.6	
4-B	34°22.9	120°39.2	80 52.8-80 53.3	465	50	15 Nov. '75	528	107	5.3	

	RV ALI	XANDER	AGASS	512			10	CALCOFI	CRUISE 7	7601				STATION	80 51.4		
	L	TITUDE	L	ONGITUD			MESSENGE		BOTTOM 104 M					DOMINANT WAY			
z	34		s	02	W 01/06		1534 GMT	DT	104 M		23 K	T 1 S 02		340 05 06 GT DT			
1 2 3 5	5 12 5 12 5 12 6 11	12 33 10 33 66 33 51 33 78 33	.604 .603 .606 .610					248.5 248.7 248.8 248.2 240.1 236.1 220.5 214.4	10 20 30 50	12.12 12.12 12.11 11.91 11.56	33 33 33 33	3.607 3.604 3.605 3.608 3.622 3.686	25. 25. 25. 25. 25.	506 248.5 504 248.8 506 248.5 546 244.7 621 237.6 836 217.2	0.000 0.025 0.050 0.074 0.123 0.180		
STAT	TON	80 51	. 4			RV /	ALEXANDER	AGASSIZ		CALCOF	CRUI	ISE 7601			STATION	80	51.4
LATI1 34 26					/DAY/YR /06/76			BOTTOM 104 M	1	LATITUDI 34 26.8	E I	LONGITUDE 120 33.5 V		O/DAY/YR 1/06/76	START TIM 1545 GM		BOTTOM 104 M
	SPEE 23 K		7ES 05 06		BARONETER 1026 MB		C 9.5 C			WIND SI	PEED	WAVES	WEA	BAROMETER	DRY	WET	CLOUDS
	Z	Т		S	SIGT					z		T		SIGT		DD	
	0 10 20 30 40 50 75 81	12.11 12.11 12.11 12.05 11.65 11.58 10.60 10.49		33.61 33.61 33.61 33.60 33.61 33.62 33.70 33.71	25.511 25.511 25.511 25.514 25.597 25.617 25.856 25.883	248 248 247 239 237 215 212	.1 0.0 .1 0.0 .1 0.0 .7 0.0 .9 0.0 .9 0.1 .3 0.1	00 25 50 75 99 93		10 20 30 40 50 7:	0 1	12.11 12.10 12.11 12.01 11.69 11.65 10.66 10.52	33.61 33.61 33.61 33.61 33.61 33.62 33.69 33.71	25.511 25.512 25.511 25.529 25.589 25.605 25.838 25.878	248.1 247.9 248.1 246.3 240.6 239.2 217.0 213.2	0.000 0.025 0.050 0.074 0.099 0.123 0.180 0.198	
STA	TION	80	5 2			RV	ALEXANDER	AGASSIZ		CALCOF							52
LATI'	TUDE 4.8 N	LONGI 120 3			/DAY/YR /06/76	START 1705	TIME	BOTTOM 209 M		LATITUD 34 24.8	E I	LONGITUDE	W 0	10/DAY/YR 1/06/76	START TIM	(E	BOTTOM 209 M
WIND	SPEE 23 K	D WA	VES 06 06	WEA	BAROMETER 1027 MB	DRY				WIND S			WEA	BAROMETER		WET	CLOUDS
340	2	T		S	SIGT	DT	DD			Z		T		SIGT		DD	
	0 10 20 30 40 50 75 100 125 150 175	12,14 12,15 12,14 12,12 12,07 10,51 10,02 9,54 9,06 7,89 7,86		33.61 33.61 33.62 33.61 33.61 33.61 33.70 33.78 33.78 33.94 34.11 34.12	25.505 25.505 25.511 25.505 25.518 25.872 26.018 26.168 26.300 26.613 26.625	248 248 248 248 247 213 199 185 173 143	.6 0.0 .6 0.0 .1 0.0 .3 0.1 .4 0.1 .8 0.1 .9 0.2 .1 0.3 .4 0.3 .2 0.3	00 25 50 75 00 24 82 35 83 29 69		1 2 3 4 5 7 10 12 15 17	0 0 0 0 0 0 0 0 0 5 5 0 0 5 5 9	12.16 12.15 12.15 12.14 12.04 11.25 10.33 9.97 9.60 9.27 8.17 8.15	33.61 33.61 33.61 33.61 33.61 33.63 33.72 33.79 33.87 33.92 34.07	25.501 25.503 25.503 25.505 25.524 25.686 25.918 26.034 26.158 26.251 26.540 26.551	249.0 248.8 248.8 248.6 246.8 231.4 209.4 198.4 1.86.6 177.7 150.3 149.3	0.000 0.025 0.050 0.075 0.100 0.125 0.170 0.236 0.270 0.325 0.375	5 0 5 0 4 4 9 9 9 9 5 7
STA	TION	80 5	2.2			RV	ALEXANDER	AGASSI2	z	CALCOF	I CRU	ISE 7601			STATIO	N 80	52.8
	TUDE	LONGI	TUDE	MC	/DAY/YR /06/76	START 1853	TIME	BOTTON 306 N	м	LATITUD	E N	LONGITUDE 120 38.7	w (MO/DAY/YR	START TI		BOTTOM 417 M
WIND	SPEE		VES	WEA								WAVES 340 07 0				WET 9.8 C	CLOUDS 0/8
	Z	T		S	SIGT		DI			Z			S		DT		
	40 50 75 100	12.08 12.04 10.60 10.22		33.61 33.61 33.68 33.74	25.512 25.512 25.516 25.516 25.516 25.524 25.840 25.953 26.227 26.305 26.451 26.573 26.451 26.705	246 216 206	.5 0.0 .8 0.1	124 182 236		1 2 3 4 5 7 10 12 15 17 20 22 25 27 30	0 0 0 0 5 0 0 5 0 0 5 0 0 0 5 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	12.15 11.56 10.99 10.54 10.11 9.40 9.10 8.56 8.38 8.02 7.92 7.58 7.36 7.25 7.16	33.62 33.64 33.68 33.76 33.90 33.97 33.98 34.06 34.10 34.12 34.15 34.16	25.851 25.987 26.214 26.317 26.410 26.5500 26.586 26.616 26.729 26.729 26.773	248.1 237.6 226.3 215.8 202.8 181.2 171.4 162.6 154.1 145.9 143.1 136.1 132.4	0.00 0.02 0.05 0.07 0.07 0.12 0.17 0.23 0.27 0.36 0.40 0.44 0.48 0.51 0.55 0.62	5 9 2 8 1 9 4 4 7 7 7 6 3 9 9 3 7

STAT	ION	80 52.8			RV A	LEXANDER	AGASSIZ	CALC	OFI CR	UISE 7601			STAT	TION 80	53.3
LATIT 34 22		LONGITUDE 120 38.7		1/06/76	START 2155	TIME GMT	BOTTOM 417 M	LATIT 34 22		LONGITUDE 120 40.8 W		0/DAY/YR 1/07/76	START 0215	TIME GMT	BOTTOM 507 M
WIND	SPEED	WAVES	WEA	BAROMETER	DRY	WET	CLOUDS	WIND 330	SPEED 27 KT		WEA	BAROMETER 1026 MB	DRY 11.2	WET C 10.0 C	CLOUDS 0/8
J.	2	т	S	SIGT	DT	DD			z	T	s	SIGT	DT	DD	
	0	12.17	33.60	25.491	249.				0		33.62	25.511	248.		
	10	12.17	33.61	25.499	249.				10		33.62	25.511	248.		
	20	12.17	33.61	25.499	249.				20		33.62	25.511	248.		
	30	12.18	33.61	25.497	249.				30		33.62	25.511	248.		
	40	12.12	33.61	25.509	248.				40	12.15	33.64	25.596	240.		
	50	11.03	33.64	25.733	226.				50 75	10.87	33.71	25.816	219.		
	75	10.72	33.65	25.796	221.				100	10.39	33.74	25.923	208		
	100	10.10	33.76	25.989	202.				125	9.56	33.88	26.172	185		
	125	9.51	33.89	26.188	183.				150	8.94	33.97	26.343	169		
	150	9.11	33.96	26.308	172				175	8.45	34.05	26.482	155		
	175	8.43	34.03	26.469	157.				200	8.34	34.07	26.514	152		
	200	8.19	34.08	26.545	149				225	7.92	34.13	26.624	142		
	225	7.99	34.10	26.590	145				250	7.77	34.14	26.654	139		
	250	7.67	34.14	26.669	138.				275	7.56	34.14	26.685	136.		
	275	7.46	34.16	26.715	133				300	7.39	34.16	26.725	132		
	300	7.31	34.16	26.736	131.					7.24	34.17	26.754	130		
	325	7.24	34.17	26.754	130				325			26.794	126		
	350	7.14	34.18	26.775	128				350	7.06	34.19		122		
	375	7.04	34.18	26.789	126				375	6.84	34.20	26.832	117		
	381	7.04	34.19	26.797	125	.9 0.6	61		400	6.54	34.22	26.889			
									425	6.53	34.22	26.890	117		
									450	6.37	34.23	26.919			
									469	6.04	34.26	26.985	108	0.//	4