MEASUREMENT STANDARDS LABORATORY # **CERTIFICATE OF CALIBRATION no R01538** Customer OREGON STATE UNIVERSITY Oceanic & Atmos. Sciences 130 Burt Hail Corvallis OR 97331 USA Item PTU Transmitter Pressure range from 500 to 1100 hPa abs., calibrated from 500 to 1100 hPa Temperature range from - 40 to + 60 °C, calibrated at + 23 °C Humidity range from 0 to 100 %RH, calibrated from 0 to 97 %RH at + 23 °C Manufacturer Vaisala Oyj Model PTU307 Serial number C2610001 Instrument number -- Calibration performed From July 2 to 4, 2008 Date July 7, 200 Signature Ville Vuorio Calibration Engineer Page 1 (11) Documents attached NOTES This Certificate may only be reproduced in full, except with the prior written permission by the issuing Laboratory. The measurement results issued in this Certificate are traceable to national or international measurement standards either via ISO/IEC 17025 Accredited Laboratories and/or internal calibrations performed in Vaisala Measurement Standards Laboratory. Certificate number Date Item Manufacturer Model Serial number Instrument number R01538 July 7, 2008 PTU Transmitter Page 2 (11) Vaisala Oyj PTU307 C2610001 umber -- Configuration The transmitter's configuration and settings were read from the transmitter's memory. The calibration is valid only with configuration and settings given in table 1. Table 1. Configuration and settings | Software | PTU300 / 4.02 | | | |-----------------|---------------|-----------------|-----| | Serial number | C2610001 | Fixed P comp. | OFF | | Batch number | C2430029 | P1 offset | 0 | | Module 1 | AOUT-1 | P1 multi adj. | ON | | Module 2 | BARO-1 | P1 linear adj. | ON | | P1 serial num. | C1720020 | P1 poly adj. | OFF | | Ch3 serial num. | C2310051 | P1 meas per sec | 1 s | | EXT factor | 0,03 | P1 average | 1 s | | Filter | OFF | Mtim | 512 | | Pressure | 1013.25 hPa | Ta | ON | | P comp. | ON | | | # PRESSURE CALIBRATION Description The pressure calibration was done in the Measurement Standards Laboratory (MSL) of Vaisala Oyj on July 2, 2008 by Ville Vuorio. Before measurements the transmitter was allowed to stabilize to the conditions of the laboratory for at least 2 hours with \pm 15,0 VDC \pm 0,3 VDC power supply switched on. Before the calibration the Multi Point Correction (MPC) and Linear Correction (LC) -values for the transmitter were read from the transmitter's memory. The pressure readings of the transmitter were compared to the values of the reference pressure transmitter in the range from 500 to 1100 hPa absolute pressure. Pressure readings of the transmitter were read with the MPC -corrections ON and the LC -corrections OFF. The pressure reading P was then calculated using the old LC -corrections. New LC -corrections were calculated using the least squares method, input into the memory of the transmitter and the final results were calculated using these new corrections. The pressure calibration is valid only with the LC corrections switched ON. Pressure values were read via serial port with resolution of 0,01 hPa. The used pressure transmitting medium was air and/or nitrogen. Reference DHI PPC3 Pressure Controller/Calibrator, serial number 722, traceable to the National Institute of Standards and Technology (NIST, USA) via MSL and Centre for Metrology and Accreditation (MIKES, Finland). Uncertainty The reported expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k = 2, which for a normal distribution corresponds to a coverage probability of approximately 95 %. The standard uncertainty of measurement has been determined in accordance with EA Publication EA-4/02. - The uncertainty is calculated from the uncertainties caused from the reference equipment, calibration process and unit under calibration (UUC) including resolution, stability (short term), linearity, repeatability, hysteresis and rounding of the final results. - The measurement results and uncertainty may be interpolated between measurement points. The measurement uncertainty represents the situation at the time and conditions of calibration. When using the UUC at different conditions and at different time the effect of the conditions and stability of the UUC shall be evaluated separately. Certificate number Date Item Manufacturer Model Serial number Instrument number R01538 July 7, 2008 PTU Transmitter Vaisala Oyj PTU307 C2610001 # Corrections The MPC and LC -corrections were read from the transmitter's memory. Table 2. Multi Point Correction -values | MPC -corrections, P1 | | | | | |----------------------|------------|--|--|--| | Reading | Correction | | | | | [hPa] | [hPa] | | | | | 499,60 | - 0,09 | | | | | 599,06 | - 0,08 | | | | | 698,54 | - 0,07 | | | | | 800,93 | - 0,06 | | | | | 900,38 | - 0,04 | | | | | 999,84 | - 0,02 | | | | | 1061,29 | - 0,03 | | | | | 1099,33 | - 0,04 | | | | Table 3. Old Linear Correction -values | Reading | LC -corrections, P1 | | |---------|---------------------|----------------| | 0 0 | 0,000
0,000 | [hPa]
[hPa] | Table 4. New Linear Correction -values | Reading | LC -corrections, P1 | | |---------|---------------------|-------| | 500 | - 0,047 | [hPa] | | 1100 | - 0,007 | [hPa] | Certificate number Date Item Manufacturer Model Serial number Instrument number R01538 July 7, 2008 PTU Transmitter Vaisala Oyj PTU307 Page 4 (11) C2610001 Measurement results The reference and the reading values presented in table 5 are averages of ten independent observations. Table 5. Measurement results, pressure | Table 5. Measurement results, pressure | | | | | | |--|---|--|--|--|--| | Reference
[hPa] | With old o
Reading P
[hPa] | oefficients
Correction
[hPa] | With new o
Reading P
[hPa] | coefficients
Correction
[hPa] | | | 1100,00
1050,07
999,98
950,05
850,01
750,03
650,06
550,04
500,07
500,01
550,05
650,07
750,06 | 1100,02
1050,07
1000,00
950,07
850,05
750,07
650,10
550,08
500,11
500,07
550,09
650,10
760,09 | - 0,02
0,00
- 0,02
- 0,04
- 0,04
- 0,04
- 0,04
- 0,06
- 0,04
- 0,03
- 0,03 | 1100,01
1050,06
999,99
950,05
850,02
750,04
650,06
550,04
500,07
500,02
550,05
650,06
750,06 | - 0,01
+ 0,01
- 0,01
0,00
- 0,01
- 0,01
0,00
0,00
- 0,01
0,00
+ 0,01 | | | 850,07
950,05
1000,02
1050,02 | 850,09
950,06
1000,03
1050,01 | - 0,02
- 0,01
- 0,01
+ 0,01 | 850,06
950,04
1000,02
1050,00 | + 0,01
+ 0,01
0,00
+ 0,02 | | | 1099,97 | 1099,98 | - 0,01 | 1099,97 | 0,00 | | The correction shall be added algebraically to the reading. Figure 1. Measurement results Certificate number Date Item Manufacturer Model Serial number Instrument number R01538 July 7, 2008 PTU Transmitter Vaisala Oyj Page 5 (11) PTU307 C2610001 - - # Final results The reading value is an average of the readings of the pressure transducer installed in the transmitter. Table 6. Final results, pressure | 1099,98 1100,00 -0,02 1099,99 -0,01 ±0,08 1050,04 1050,04 0,00 1050,03 ±0,01 ±0,08 1000,00 1000,02 -0,02 1000,00 0,00 ±0,08 950,05 950,06 -0,01 950,05 0,00 ±0,09 850,04 850,07 -0,03 850,04 0,00 ±0,08 750,04 750,07 0.03 750,04 0.00 ±0,08 | Reference
[hPa] | With old c
Reading P
[hPa] | oefficients
Correction
{ hPa } | With new on Reading P | coefficients
Correction
[hPa] | Uncertainty
[hPa] | |--|--------------------|------------------------------------|--------------------------------------|-----------------------|---------------------------------------|----------------------| | 650,07 650,10 -0,03 650,07 0,00 ±0,08 550,05 550,09 -0,04 550,05 0,00 ±0,09 | 1050,04 | 1050,04 | 0,00 | 1050,03 | + 0,01 | ± 0,08 | | | 1000,00 | 1000,02 | - 0,02 | 1000,00 | 0,00 | ± 0,08 | | | 950,05 | 950,06 | - 0,01 | 950,05 | 0,00 | ± 0,09 | | | 850,04 | 850,07 | - 0,03 | 850,04 | 0,00 | ± 0,08 | | | 750,04 | 750,07 | - 0,03 | 750,04 | 0,00 | ± 0,08 | | | 650,07 | 650,10 | - 0,03 | 650,07 | 0,00 | ± 0,08 | The correction shall be added algebraically to the reading. Figure 2. Final results Conditions Pressure Temperature Humidity 1012,4 hPa ± 0,3 hPa + 23,4 °C ± 0,3 °C 39 %RH ± 3 %RH **₩ VAISALA** Certificate number Date Item Manufacturer Model Serial number Instrument number July 7, 2008 PTU Transmitter Vaisala Oyj PTU307 C2610001 R01538 Page 6 (11) #### TEMPERATURE CALIBRATION Description The temperature calibration was done in the Measurement Standards Laboratory (MSL) of Vaisala Oyj on July 4, 2008 by Antti Leivonen. Before measurements the transmitter was allowed to stabilize to the conditions of the laboratory for at least 2 hours with \pm 15,0 VDC \pm 0,3 VDC power supply switched on. The temperature readings of the transmitter were compared to the values of the reference thermometer at 23,0 °C in a calibration chamber. Temperature values were read via serial port with resolution of 0,01 °C. New correction coefficients were calculated and input into the transmitter's memory. Temperature values are given according to the International Temperature Scale of 1990, ITS-90. Reference Vaisala PTU200 PTU Transmitter, serial number U0350007, traceable to National Institute of Standards and Technology (NIST, USA) via MSL. Uncertainty The reported expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k = 2, which for a normal distribution corresponds to a coverage probability of approximately 95 %. The standard uncertainty of measurement has been determined in accordance with EA Publication EA-4/02. - The uncertainty is calculated from the uncertainties caused from the reference equipment, calibration process and unit under calibration (UUC) including resolution, stability (short term), repeatability, self heating and rounding of the final results. - The measurement results and uncertainty are representing the measurement point only. The measurement uncertainty represents the situation at the time and conditions of calibration. When using the UUC at different conditions and at different time the effect of the conditions and stability of the UUC shall be evaluated separately. Certificate no Date Item Manufactured by Model Serial number Instrument number R01538 January 0, 1900 **PTU Transmitter** Vaisala Oyi PTU307 C2610001 Calculations New offset- and gain coefficients were calculated from the measurement results. The coefficients are presented in table 7. The final results were calculated using equations 1 and 2. (1) Page 7 (11) T' = Reading without offset- and gain corrections [°C] (2) Ta' = Reading without offset- and gain corrections [°C] New coefficients were input into the transmitter's memory. Table 7. Coefficients | Table 1. Coefficients | | | | |-----------------------|------------------|----------------------------------|------| | | Old coefficients | New coefficients | | | Toffset | 0,00000000000 | 0,014379999600 | [%] | | T gain Ta offset | 1,000000000000 | 1,000000000000
0.015659999800 | (°C) | | Ta gain | 1,000000000000 | 1,000000000000 | () | | | | | | Final temperature results. The reference and the reading values are averages of ten independent observations. The standard deviations are included in the calculated uncertainties. Table 8. Final temperature results, T | | With old coefficients | | With new o | | | |-------------------|-----------------------|--------------------|-------------------|--------------------|---------------------| | Reference
[°C] | Reading T
[°C] | Correction
[°C] | Reading T
[°C] | Correction
[°C] | Uncertainty
(°C) | | + 22,99 | + 22,98 | + 0,01 | + 22,99 | 0,00 | ± 0,07 | The correction must be added algebraically to the reading. Table 9. Final temperature results, Ta | | With old coefficients | | With new o | | | |-------------------|-----------------------|--------------------|--------------------|-------------------|---------------------| | Reference
[°C] | Reading Ta
[°C] | Correction
[°C] | Reading Ta
(°C) | Correction [°C] | Uncertainty
[°C] | | + 22,99 | + 22,97 | + 0,02 | + 22,99 | 0,00 | ± 0,07 | Conditions Temperature Humidity + 24,1 °C ± 0,3 °C 38 %RH ± 3 %RH #### Certificate number Date Item Manufacturer Model Serial number Instrument number R01538 July 7, 2008 PTU Transmitter Vaisala Oyj PTU307 C2610001 Page 8 (11) # **HUMIDITY CALIBRATION** #### Description The humidity calibration was done in the Measurement Standards Laboratory (MSL) of Vaisala Oyj on July 4, 2008 by Antti Leivonen. Before measurements the transmitter was allowed to stabilize to the conditions of the laboratory for at least 12 hours with \pm 15,0 VDC \pm 0,3 VDC power supply switched on. The humidity readings of the transmitter were compared to the reference humidity values at room temperature in Salt Solution Generator in the range from 0 to 97 %RH. The humidity readings were read via serial port with resolution of 0,01 %RH. Coefficients RHI_0, RHI_1, RHI_2, RHI_3 and RHI_4 were calculated from the observed humidity values and input to the transmitter's memory. Measurements were made in Salt Solution Generator, where the temperature was \pm 23,09 °C \pm 0,03 °C. The 0,1 %RH value was measured in dry nitrogen flow which temperature was \pm 22,60 °C \pm 0,29 °C. # References Salt Solution Generator UG 8195, traceability is based on the physical phenomenon in which the equilibrium relative humidity values associated with certain saturated salt solutions are known. The operation principle and values of the Salt Solution Generator are based on Lewis Greenspan's research /1/ and on the international standard ASTM E 104 - 85 /2/. # Uncertainty The reported expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k = 2, which for a normal distribution corresponds to a coverage probability of approximately 95 %. The standard uncertainty of measurement has been determined in accordance with EA Publication EA-4/02. - The uncertainty is calculated from the uncertainties caused from the reference equipment, calibration process and unit under calibration (UUC) including resolution, stability (short term), linearity, repeatability, hysteresis and rounding of the final results. - The measurement results and uncertainty may be interpolated between measurement points. The measurement uncertainty represents the situation at the time and conditions of calibration. When using the UUC at different conditions and at different time the effect of the conditions and stability of the UUC shall be evaluated separately. Certificate number Date Item Manufacturer Model Serial number Instrument number R01538 July 7, 2008 PTU Transmitter Page 9 (11) Vaisala Oyj PTU307 C2610001 #### Calculations The new RHI_0 to RHI_4 coefficients were calculated from the measurement results using the least squares method and input into the transmitter's memory. Complete description of calculations performed is available in the Measurement Standards Laboratory. During the measurement only temperature T was recorded and the Ta value was calculated using temperature measurement results. With this method the exact humidity readings were calculated with old and new coefficients using equation 3. $$RH_{OUT} = RH \cdot P_{ws} / P_{wa}$$, where (3) RH = Humidity reading with offset- and gain corrections [%RH] $$P_{ws} = 6,1078 \cdot 10^{7.5 \left(\frac{T}{T + 237,3}\right)} \tag{4}$$ $$P_{wa} = 6,1078 \cdot 10^{7.5} \left(\frac{Ta}{Ta + 237.3} \right)$$ (5) Table 10. Coefficients, humidity | Table 10: Cocmolenia | · | | | |----------------------|------------------------------------|--|------------------------| | Coefficient | Old coefficients | New coefficients | | | RHI_0 | 0,000000000E+00
0,000000000E+00 | + 1,159999970E-01
- 2,673508880E-02 | [%RH] | | RHI_1
RHI_2 | 0,00000000E+00 | + 4,347300050E-04 | [%RH-1] | | RHI_3
RHI_4 | 0,00000000E+00
0,00000000E+00 | - 1,399999980E-07
0,00000000E+00 | [%RH-2]
[%RH-3] | | RH offset | 0,00000000E+00 | 0,000000000E+00 | [%RH] | | RH gain | 1,00000000E+00 | 1,000000000E+00 | | Certificate number Date Item Manufacturer Model Serial number Instrument number R01538 July 7, 2008 PTU Transmitter Vaisala Oyj PTU307 C2610001 Measurement results The measurements were made for ascending and descending humidity values. The probe was allowed to stabilize to each humidity for 10 minutes before the reference values were recorded and the humidity and temperature values were recorded ten times. The humidity values were then calculated using the equation 3 and coefficients given in table 10. The calculated humidity values in table 11 are averages of these values. Table 11. Measurement results, humidity | | With old co | pefficients | With new coefficients | | | |--------------------|--------------------------|--------------------|--------------------------|-----------------------|--| | Reference
(%RH) | Reading RHout
[%RH] | Correction [%RH] | Reading RHout
[%RH] | Correction
[%RH] | | | 0,10 | -0,07 | + 0,17 | 0,04 | + 0,06 | | | 11,30 | 11,44 | - 0,14 | 11,31 | - 0,01 | | | 32,90 | 32,94 | - 0,04 | 32,63 | + 0,27 | | | 53,47 | 53,06 | + 0,41 | 52,95 | + 0,52 | | | 75,36 | 74,57 | + 0,79 | 75,05 | + 0,31 | | | 84,63 | 83,70 | + 0,93 | 84,53 | + 0,10 | | | 97,41 | 95,52 | + 1,89 | 96,92 | + 0,49 | | | 97,41 | 96,21 | + 1,20 | 97,64 | - 0,23 | | | 84,63 | 84,27 | + 0,36 | 85,13 | - 0,50 | | | 75,36 | 75,21 | + 0,15 | 75,71 | - 0,35 | | | 53,46 | 53,72 | - 0,26 | 53,63 | - 0,17 | | | 32,89 | 33,50 | - 0,61 | 33,20 | - 0,31 | | | 11,30 | 11,72 | - 0,42 | 11,58 | - 0,28 | | | 0,10 | -0,13 | + 0,23 | -0,01 | + 0,11 | | The correction shall be added algebraically to the reading. Figure 3. Measurement results Certificate number Date Item Manufacturer Model Serial number Instrument number R01538 July 7, 2008 PTU Transmitter Vaisala Oyj Page 11 (11) Vaisala Oy PTU307 C2610001 _ _ # Final results The final humidity calibration results are averages of measured values. Table 12. Final results, humidity | Reference
[%RH] | With old co
Reading RHout
[%RH] | | With new co
Reading RHout
[%RH] | | Uncertainty
[%RH] | |--------------------|---|-------|---|-------|------------------------| | 0,1 | -0,1 | + 0,2 | 0,0 | + 0,1 | ± 0,8 | | 11,3 | 11,6 | - 0,3 | 11,4 | - 0,1 | ± 1,0 | | 32,9 | 33,2 | - 0,3 | 32,9 | 0,0 | ± 0,8 | | 53,5 | 53,4 | + 0,1 | 53,3 | + 0,2 | ± 0,9 | | 75,4 | 74,9 | + 0,5 | 75,4 | 0,0 | ± 0,8 | | 84,6 | 84,0 | + 0,6 | 84,8 | - 0,2 | ± 1,3 | | 97,4 | 95,9 | + 1,5 | 97,3 | + 0,1 | ± 1,6 | The correction shall be added algebraically to the reading. Figure 4. Final results # Conditions Pressure $+ 1009.7 \,^{\circ}\text{C} \pm 0.3 \,^{\circ}\text{hPa}$ Temperature $+ 24.1 \,^{\circ}\text{C} \pm 0.3 \,^{\circ}\text{C}$ Humidity $39 \,^{\circ}\text{RH} \pm 3 \,^{\circ}\text{RH}$ # REFERENCES - 1. Humidity Fixed Points of Binary Saturated Aqueous Solutions. Lewis Greenspan. Journal of Research. Vol. 81A, No. 1, January - February 1977 - 2. ASTM E 104-85. Standard practice for maintaining constant relative humidity by means of aqueous solutions. ASTM. American Society for Testing and Materials. 1985 Print this order form Fill out the required information Pack Instrument carefully Include filled form Into the package Send to Valsala P.O. Box 26, FIN-00421 Helsinki, Finland Tel. +358 9 894 91 Fax. +358 9 8949 2485 Email: industrialsales@vaisala.com www.vaisala.com # Calibration Services for PTU200 and PTU300 Series Transmitters Please fill in the model(s), serial number(s) and order code with the selected options: | Model (transmitter): | Serial no: | | | | | | | | | | | | |---|----------------------------------|--------------------------------|----|--------|-----|-----|--------|-----|---|---|--------|-------| | Model (probe, If any): | Serial no: | Code: | | X | A | | Τ | Π | Α | Α | Α | USD | | Calibration class | ISO/IEC | 17025 Accredited calibration | Α | \top | 1 | П | \top | | | | | 230,- | | | ISC | 10012 Compliant calibration | В | | | 11 | | 1 | | | | 0,- | | Pressure calibration | | No calibration | т. | A | | 11 | | | | | | 0,- | | NOTE 1 | 50, 75, 150, 300, 500, 3 | 700, 900, 1000 and 1100 hPa | | в | 1 | 11 | | | | | | 188,- | | | 500, 550, 650, 750, 850, 99 | 50, 1000, 1050 and 1100 hPa | | cl | | 11 | ì | | | | | 188,- | | Calibration temperature | - | +23 °C (room temperature) | | | _ A | | | | | | | Q,- | | Temperature callbration | | ne-point calibration at +23 ℃ | | | | ^ A | | | | | \
\ | 0,- | | NOTE 1 | | 0, +20 and +40 ℃ | | | | ВΪ | | | | | ΙI | 213,- | | _ | +17,5, | +20, +22,5, +25 and +27,5 °C | | | | С | | | |) | ΙI | 271,- | | | | -20, 0, +20, +40 and +60 °C | | | | D | | 1 | | | ΙI | 271,- | | NOTE 2 | -35 | , -20, 0, +20, +40 and +60 °C | | | | E | | 1 | | | ΙI | 300,- | | | -40 | , -20, 0, +20, +40 and +60 ℃ | | | | F | ì | | | | ΙI | 300,- | | | 0, +10, +3 | 20, +30, +40, +50 and +60 °C | | | | G | | | | | ll | 329,- | | Free point 1: | Free point 2: Free po | int 3: | | | | Н | | | | ļ | | 253,- | | Humidity callbration | | No calibration | | | | | A | | | | | 0,- | | NOTE 3 | | 0.1, 11, 33, 53, and 75 %RH | | | | | в | | | | | 194,- | | | 0.1, 1 | 1, 33, 53, 75, 85 and 97 %RH | | | | | С | | | | | 219,- | | Adjustment | <u>_</u> | No adjustment | | | | | _ A | N . | | | ļļ | 0,- | | - | Adjusted for optimum performance | | | | | | 8 | 3 | | | | 0,- | | Calibration methods | Me | asurement via serial interface | | | | | | _ A | | | | 0,- | | Measurement via senal interface and analog outputs (PTU300 series only) | | | | | | | | В | | | | 100,- | | Results reported, pressure | | hPa | | | | | | | Α | | | 0,- | | Results reported, temperature and humidity | | %RH and ℃ | | | | | | | | Α | | 0,- | | Language of the Certificate | | English | | | | | | | | | Α | 0,- | - NOTE 1: Selected calibration range shall not exceed the measurement range of the transmitter. - NOTE 2: Maximum temperature range of HMP45D probe is from -40 to +60 ℃ and from -35 to +60 ℃ for HMP45A/P probe. Please note that the temperature calibration for the PTU301 transmitter is made at climate chamber with electronics at measurement temperature, all other transmitters are calibrated with electronics at room temperature. - NOTE 3: Please note that the humidity calibration is performed using saturated salt solutions at room temperature. Please note that one-point temperature calibration at +23 °C temperature is included into the humidity calibration. Please note that the humidity measurement range in PTU200 does not cover measurement at 0.1 %RH humidity value. Please fill in the end customer information for Certificate: | End customer | | | |-----------------------------|--|--| Order received and approved | | |